
Draft for Review

Intel® Platform Innovation Framework
for EFI

S3 Resume Boot Path
Specification

Draft for Review

Version 0.9

September 16, 2003

S3 Resume Boot Path Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright  2001–2003, Intel Corporation.

Intel order number xxxxxx-001

Draft for Review

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

S3 Resume Boot Path Specification Draft for Review

iv September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ..7
Overview..7
Goals ...7
Requirements ..7
Conventions Used in This Document...8

Data Structure Descriptions ..8
Protocol Descriptions ..9
Procedure Descriptions...9
PPI Descriptions ...10
Pseudo-Code Conventions ...10
Typographic Conventions ...11

2 Design Discussion...13
Assumptions ..13

Multiple Phases of Platform Initialization ...13
Process of Platform Initialization ...13

Restoring the Platform ...14
Restoring the Platform ..14
Phases in the S3 Resume Boot Path ..15

SEC and the S3 Resume Boot Path ...15
PEI ..15

PEI and the S3 Resume Boot Path ...15
Saving Configuration Data in PEI..16

DXE ..16
DXE and the S3 Resume Boot Path ...16
Framework Boot Script..17
S3 Resume PPI and DXE IPL PPI ..18

3 Code Definitions...21
Introduction..21
ACPI S3 Save Protocol..21

EFI_ACPI_S3_SAVE_PROTOCOL ..21
EFI_ACPI_S3_SAVE_PROTOCOL. GetLegacyMemorySize()23
EFI_ACPI_S3_SAVE_PROTOCOL.S3Save()...24

S3 Resume PPI ...26
EFI_PEI_S3_RESUME_PPI ...26
EFI_PEI_S3_RESUME_PPI.S3RestoreConfig() ...27

Figures
Figure 2-1. Framework S3 Resume Boot Path ...14
Figure 2-2. PEI Phase in S3 Resume Boot Path...15
Figure 2-3. Configuration Save for PEI Phase ..16
Figure 2-4. DXE IPL PPI and S3 Resume PPI in S3 Resume Boot Path19

S3 Resume Boot Path Specification Draft for Review

vi September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
S3 resume boot path in the Intel® Platform Innovation Framework for EFI (hereafter referred to as
the “Framework”). The S3 resume boot path is a special boot path that causes the Framework to
take actions different from those in the normal boot path. In this special path, the Framework
derives presaved data about the platform’s configuration from persistent storage and configures the
platform before jumping to the operating system’s waking vector.

This specification does the following:

• Describes the basic components of the S3 resume boot path, how it relates to a normal boot
path, and how it interacts with other Framework phases and code

• Provides code definitions for the S3-related protocols and PPIs that are architecturally required
by the Intel® Platform Innovation Framework for EFI Architecture Specification

Goals
This Framework S3 resume boot path design has the following goals:

• Extensibility: The Framework S3 resume boot path should easily adapt to different platforms,
such as Itanium®-based platforms and those based on 32-bit Intel® architecture (IA-32), by
replacing only a few platform-specific modules.

• High performance: S3 restoration is most commonly used in notebook computers. Its
performance is highly visible to end users.

Requirements
This Framework S3 resume boot path design must meet the following requirements:

• All aspects of this design must comply with the following:
 Intel® Platform Innovation Framework for EFI Architecture Specification
 Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core Interface

Specification (PEI CIS)
 Intel® Platform Innovation Framework for EFI Driver Execution Environment Core

Interface Specification (DXE CIS)
 Advanced Configuration and Power Interface Specification (hereafter referred to as the

“ACPI specification”), revision 2.0
• The design must enable size efficiency, code reuse, and maintainability.

S3 Resume Boot Path Specification Draft for Review

8 September 2003 Version 0.9

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Draft for Review Introduction

Version 0.9 September 2003 9

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

S3 Resume Boot Path Specification Draft for Review

10 September 2003 Version 0.9

PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

PPI Interface Structure: A “C-style” procedure template defining the PPI calling
structure.

Parameters: A brief description of each field in the PPI structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller
should be aware.

Related Definitions: The type declarations and constants that are used only by
this interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI
is required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Draft for Review Introduction

Version 0.9 September 2003 11

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

S3 Resume Boot Path Specification Draft for Review

12 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 13

2
Design Discussion

Assumptions

Multiple Phases of Platform Initialization
The Framework consists of two phases of platform initialization:

• Pre-EFI Initialization (PEI)
• Driver Execution Environment (DXE)

The PEI phase is responsible for initializing enough of the platform’s resources to enable the
execution of the DXE phase, which is where the majority of platform configuration is performed by
different DXE drivers.

Initialization that is done in PEI is not necessarily preserved in DXE. In other words, a DXE driver
can override the configuration settings that were derived from PEI. In light of this fact, the preboot
platform state that the S3 resume boot path needs to restore is the DXE snapshot of the platform
state, rather than the PEI snapshot of the platform state.

Process of Platform Initialization
Platform initialization can be viewed as a flow of the following:

• I/O operations
• Memory operations
• Accessing the PCI configuration space
• A collection of platform-specific actions that can be abstracted by Pre-EFI Initialization

Module (PEIM) PEIM-to-PEIM Interfaces (PPIs)

The process of restoring hardware settings in different platforms involves different actions or even
different instruction sets. These differences, however, can be abstracted behind PEIM PPIs.

S3 Resume Boot Path Specification Draft for Review

14 September 2003 Version 0.9

Restoring the Platform

Restoring the Platform
The goal of an S3 resume is to restore the platform to its preboot configuration. However, it is
impossible to restore the platform in only one step, without going through all the Framework
initialization phases, because the Framework is unable to have a priori knowledge of the following:

• Preboot configuration that is introduced by various PEIMs
• Drivers provided by different vendors

As a result, the Framework still needs to restore the platform in a phased fashion as it does in a
normal boot path. The figure below shows the phases in an S3 resume boot path. See the following
subsections for details of each phase.

SEC PEI DXE BDS

SEC

PEI
(S3-aware

PEIMs to restore
PEI phase
configuration)

Boot Script
Executor PEIM to
restore DXE phase
configuration

OS loadNormal Boot

S3 Resume

Boot Script
Table in NVS

Save

Execute

OS waking vector

Figure 2-1. Framework S3 Resume Boot Path

Draft for Review Design Discussion

Version 0.9 September 2003 15

Phases in the S3 Resume Boot Path

SEC and the S3 Resume Boot Path
The Security (SEC) phase is the first architectural phase in the Framework. It builds the root of trust
for the entire system. As such, the SEC phase remains intact in the S3 resume boot path.

PEI

PEI and the S3 Resume Boot Path
The PEI phase initializes the platform with the minimum configuration that is needed to enable the
execution of the DXE phase. During the S3 resume boot path, the Framework still needs to restore
the PEI portion of configuration.

Each PEIM is “boot path aware” in that the PEIM can call the appropriate PEI service to find out
what the current boot path is. This awareness enables the platform to restore more efficiently
because the same PEIM can save the configuration during a normal boot path and take advantage of
that configuration in the S3 resume boot path. The figure below shows how the PEI phase works in
a normal boot path and in an S3 resume boot path.

PEIM initializes
the platform
without known
configuration

Normal Boot Path

Nonvolatile
storage

Save Configuration

PEIM initializes
the platform
with known
configuration

Retrieve Configuration

S3 Resume Boot Path

Figure 2-2. PEI Phase in S3 Resume Boot Path

S3 Resume Boot Path Specification Draft for Review

16 September 2003 Version 0.9

Saving Configuration Data in PEI
There are different ways to save configuration data, such as the firmware volume variable, for the
PEI phase in nonvolatile storage (NVS). One way is to save the data directly in the PEI phase.
However, if the PEI phase does not implement the capability to write to a firmware volume, a
PEIM can choose to pass the configuration data to the DXE phase using a Hand-Off Block
(HOB). The PEIM’s DXE counterpart or another appropriate DXE component can then save the
configuration data. The figure below illustrates this mechanism to save the configuration data. See
the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for more
details on HOBs.

To achieve higher performance, it is recommended to implement the latter mechanism because
code running in the PEI phase is more time consuming than code running in the DXE phase. Note
that the way to save the configuration data during the PEI phase is outside the scope of
this document.

PEIM initializes
the platform
without known
configuration

Nonvolatile
storage

Normal
Boot Path

PEIM initializes
the platform
with known
configuration

S3 Resume
Boot Path

Dispatch DXE
components

Retrieve
configuration

Save
configuration

Pass HOB from PEI
phase to DXE phase

HOB

Build configuration
into HOB

Figure 2-3. Configuration Save for PEI Phase

DXE

DXE and the S3 Resume Boot Path
In the DXE phase during a normal boot path, various DXE drivers collectively bring the platform to
the preboot state. However, bringing DXE into the S3 resume boot path and making a DXE driver
boot-path aware is very risky for the following reasons:

• The DXE phase hosts numerous services, which makes it rather large.
• Loading DXE from flash is very time consuming.

Even if DXE could be relocated into NVS during a normal boot, the large amount of memory that
DXE consumes and the complexity of executing the DXE phase do not justify doing so.

Draft for Review Design Discussion

Version 0.9 September 2003 17

Instead, the Framework provides a boot script that lets the S3 resume boot path avoid the DXE
phase altogether, which helps to maximize optimum performance. During a normal boot, DXE
drivers record the platform’s configuration in the boot script, which is saved in NVS. During the
S3 resume boot path, a boot script engine executes the script, thereby restoring the configuration.

The ACPI specification only requires the BIOS to restore chipset and processor configuration.
The chipset configuration can be viewed as a series of memory, I/O, and PCI configuration
operations, which DXE drivers record in the Framework boot script. During an S3 resume, a boot
script engine executes the boot script to restore the chipset settings. Processor configuration
involves the following:

• Basic setup for System Management Mode (SMM)
• Microcode updates
• Processor-specific initialization
• Processor cache setting

DXE drivers register arbitrary code in the boot script to restore processor configuration. During the
S3 resume boot path, the boot script engine can jump to execute the registered code to restore all
processor-related configurations.

Framework Boot Script

Framework Boot Script

The Framework boot script is a script that is used to describe a set of common operations to
initialize the platform. Such common operations include I/O, memory, PCI, and System
Management Bus (SMBus).

There can be multiple boot script tables in a certain platform. It is assumed that these tables
sufficiently describe the actions that need to be taken to restore the preboot platform state.

A PEIM publishes EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI, which is a PPI that allows the
boot script to be executed. Executing the Framework boot script relies on multiple PPIs, including
the following, which need to be published before executing the Framework boot script:

• EFI_PEI_CPU_IO_PPI

• EFI_PEI_PCI_CFG_PPI

• EFI_PEI_SMBUS_PPI

• EFI_PEI_STALL_PPI

See the Intel® Platform Innovation Framework for EFI Boot Script Specification for more details
on these dependencies.

Boot Script Save Protocol

The EFI_BOOT_SCRIPT_SAVE_PROTOCOL provides standard APIs to manipulate the
Framework boot script table. See the Intel® Platform Innovation Framework for EFI Boot Script
Specification for more information.

S3 Resume Boot Path Specification Draft for Review

18 September 2003 Version 0.9

S3 Resume PPI and DXE IPL PPI
The DXE Initial Program Load (IPL) PPI is architecturally the last PPI that is executed in the PEI
phase. It is also made aware of the exact boot path that the Framework is currently using. As a
result, the DXE IPL PPI is the place to initiate a process to restore the preboot platform state and
then jump to the operating system (OS) waking vector. The DXE phase will not be loaded as it was
in a normal boot.

When booting with the S3 resume boot path, the DXE IPL PPI will locate the S3 Resume PPI. If it
is found, the DXE IPL PPI will transfer control to the S3 Resume PPI. The S3 Resume PPI is
responsible for restoring the platform configuration to the preboot state.

The S3 Resume PPI must execute a Framework boot script table to restore the platform
configuration. It also needs to locate the OS waking vector and transfer its control to the OS to
complete the S3 resume. However, during all these operations, only the memory range that is
reserved for an S3 resume can be available for use. Any memory usage that is out of this range may
perturb the context of system memory and corrupt the S3 resume.

To execute the Framework boot script and restore the platform configuration, the S3 Resume PPI
needs to know the following:

• The memory address of the S3 boot script table or the name of the firmware volume file that
contains the S3 boot script table

• The Root System Description Table (RSDT) pointing to the start of the ACPI table that it needs
to find the OS waking vector

• Reserved memory range that can be used in the S3 resume boot path

This information can be made available through EFI firmware variables or nonperturbed memory.

The figure below shows the process flow of the DXE IPL PPI and S3 Resume PPI in the S3 resume
boot path.

See Code Definitions for the definition of EFI_PEI_S3_RESUME_PPI. See the Intel® Platform
Innovation Framework for EFI Pre-EFI Initialization Core Interface Specification (PEI CIS) for
the definition of the DXE IPL PPI.

Draft for Review Design Discussion

Version 0.9 September 2003 19

Enter the DXE IPL
PPI

S3 Resume
Boot Path?

Other Boot Path

Locate the
S3 Resume PPI

Successful?

Jump to the
S3 Resume PPI

Error Handling

Yes

Yes

No

No

A

Enter the
S3 Resume PPI

Get necessary
information from
firmware variables

S3 boot script
table address

RSDT
....

Execute the boot
script

Preboot state
not restored

Locate the OS
waking vector by
traversing from

RSDT

Preboot state
restored

Jump to the OS
waking vector

AStart

End

Figure 2-4. DXE IPL PPI and S3 Resume PPI in S3 Resume Boot Path

S3 Resume Boot Path Specification Draft for Review

20 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 21

3
Code Definitions

Introduction
This section contains definitions for the following protocols, PPIs, and functions that are involved
in the S3 resume boot path:

• EFI_ACPI_S3_SAVE_PROTOCOL

• EFI_PEI_S3_RESUME_PPI

ACPI S3 Save Protocol

EFI_ACPI_S3_SAVE_PROTOCOL

Summary
This protocol is used to prepare all information that is needed for the S3 resume boot path. This
protocol is not required for all platforms.

GUID
#define EFI_ACPI_S3_SAVE_GUID \

{ 0x125f2de1, 0xfb85, 0x440c, 0xa5, 0x4c, 0x4d, 0x99, 0x35,
0x8a, 0x8d, 0x38 }

Protocol Interface Structure
typedef struct _EFI_ACPI_S3_SAVE_PROTOCOL{

EFI_ACPI_GET_LEGACY_MEMORY_SIZE GetLegacyMemorySize;
EFI_ACPI_S3_SAVE S3Save;

} EFI_ACPI_S3_SAVE_PROTOCOL;

Parameters
GetLegacyMemorySize

Gets the size of legacy memory below 1 MB that is required for S3 resume. See the
GetLegacyMemorySize() function description.

S3Save

Prepare all information for an S3 resume. See the S3Save() function description.

S3 Resume Boot Path Specification Draft for Review

22 September 2003 Version 0.9

Description
The EFI_ACPI_S3_SAVE_PROTOCOL is responsible for preparing all the information that the
Framework needs to restore the platform’s preboot state during an S3 resume boot. This
information can include the following:

• The Framework boot script table, containing all necessary operations to initialize the platform
• ACPI table information, such as RSDT, through which the OS waking vector can be located
• Range of reserved memory that can be used on the S3 resume boot path

This protocol can be used after the Framework makes sure that the boot process is complete and
that no hardware has been left unconfigured. It is implementation specific where to call this
protocol to save all the information.

In the case of an EFI-aware OS, ExitBootServices()can be a choice to provide this hook.
The currently executing EFI OS loader image calls ExitBootServices()to terminate all boot
services. After ExitBootServices() successfully completes, the loader becomes responsible
for the continued operation of the system.

On a normal boot, ExitBootServices() checks if the platform supports S3 by looking for
EFI_ACPI_S3_SAVE_PROTOCOL. If the protocol exists, ExitBootServices()will assume
that the target platform supports an S3 resume and then call EFI_ACPI_S3_SAVE_PROTOCOL
to save the S3 resume information. The entire Framework boot script table will then be generated,
assuming the platform currently is in the preboot state.

Draft for Review Code Definitions

Version 0.9 September 2003 23

EFI_ACPI_S3_SAVE_PROTOCOL.GetLegacyMemorySize()

Summary
Gets the size of legacy memory below 1 MB that is required during S3 resume.

Prototype
typedef
EFI_STATUS
EFI_BOOTSERVICE
(EFIAPI *EFI_ACPI_GET_LEGACY_MEMORY_SIZE) (

IN struct _EFI_ACPI_S3_SAVE_PROTOCOL *This,
OUT UINTN *Size

);

Parameters
This

A pointer to the EFI_ACPI_S3_SAVE_PROTOCOL instance.

Size

The returned size of legacy memory below 1 MB.

Description
This function returns the size of the legacy memory below 1 MB that is required during an S3
resume. Before the Framework-based firmware transfers control to the OS, it has to transition from
flat mode into real mode in case the OS supplies only a real-mode waking vector. This transition
requires a certain amount of legacy memory below 1 MB. After getting the size of legacy memory
below 1 MB, the caller is responsible for allocating the legacy memory below 1 MB according to
the size that is returned. The specific implementation of allocating the legacy memory is out of the
scope of this specification.

If the returned value of Size equals 0, the firmware does not support jumping to a real-mode OS
waking vector.

Status Codes Returned
EFI_SUCCESS Size is successfully returned.

EFI_INVALID_PARAMETER The pointer Size is NULL.

S3 Resume Boot Path Specification Draft for Review

24 September 2003 Version 0.9

EFI_ACPI_S3_SAVE_PROTOCOL.S3Save()

Summary
Prepares all information that is needed in the S3 resume boot path.

Prototype
typedef
EFI_STATUS
EFI_BOOTSERVICE
(EFIAPI *EFI_ACPI_S3_SAVE) (

IN struct _EFI_ACPI_S3_SAVE_PROTOCOL *This,
IN VOID *LegacyMemoryAddress

);

Parameters
This

A pointer to the EFI_ACPI_S3_SAVE_PROTOCOL instance.

LegacyMemoryAddress

The base of legacy memory. It is allocated by the caller according the size returned
by the previously call to GetLegacyMemorySize().

Description
This function is used to do the following:

• Prepare all information that is needed in the S3 resume boot path. This information can include
the following:
 Framework boot script table
 RSDT pointer
 Reserved memory for the S3 resume

• Get the minimum memory length below 1 MB that is required for the S3 resume boot path.

If LegacyMemoryAddress is NULL, the firmware will be unable to jump into a real-mode
waking vector. However, it might still be able to jump into a flat-mode waking vector as long as the
OS provides a flat-mode waking vector. It is the caller’s responsibility to ensure the
LegacyMemoryAddress is valid. If the LegacyMemoryAddress is higher than 1 MB,
EFI_INVALID_PARAMETER will be returned.

This function will store all the information in NVS on a normal boot path. On an S3 boot path, this
information will be retrieved to initialize the platform and finally transfer its control to OS. The
caller should ensure that all the information is available at that moment. Especially for the
Framework boot script table, this function will internally call the
EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable() function to get
EFI_ACPI_S3_RESUME_SCRIPT_TABLE and copy it to NVS automatically. Therefore, the
caller should add all necessary boot script records into
EFI_ACPI_S3_RESUME_SCRIPT_TABLE before calling CloseTable().

Draft for Review Code Definitions

Version 0.9 September 2003 25

See the Intel® Platform Innovation Framework for EFI Boot Script Specification for definitions of
the following:

• EFI_BOOT_SCRIPT_SAVE_PROTOCOL.CloseTable()

• EFI_ACPI_S3_RESUME_SCRIPT_TABLE

Status Codes Returned
EFI_SUCCESS All information was saved successfully.

EFI_INVALID_PARAMETER The memory range is not located below 1 MB.

EFI_OUT_OF_RESOURCES Resources were insufficient to save all the information.

EFI_NOT_FOUND Some necessary information cannot be found.

S3 Resume Boot Path Specification Draft for Review

26 September 2003 Version 0.9

S3 Resume PPI

EFI_PEI_S3_RESUME_PPI

Summary
This PPI accomplishes the firmware S3 resume boot path and transfers control to OS.

GUID
#define EFI_PEI_S3_RESUME_PPI_GUID \
{ 0x4426CCB2, 0xE684, 0x4a8a, 0xAE, 0x40, 0x20, 0xD4, 0xB0, 0x25,
0xB7, 0x10}

PPI Interface Structure
typedef struct _EFI_PEI_S3_RESUME_PPI {

EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG S3RestoreConfig;
} EFI_PEI_S3_RESUME_PPI;

Parameters
S3RestoreConfig

Restores the platform to its preboot configuration for an S3 resume and jumps to the
OS waking vector. See the S3RestoreConfig() function description.

Description
This PPI is published by the S3 resume PEIM and can be used on the S3 resume boot path to
restore the platform to its preboot configuration and transfer control to OS. The information that is
required for an S3 resume can be saved during the normal boot path using
EFI_ACPI_S3_SAVE_PROTOCOL. This presaved information can then be restored in the S3
resume boot path using EFI_PEI_S3_RESUME_PPI. Architecturally, the S3 resume PEIM is the
last PEIM to be dispatched in the S3 resume boot path.

Before using this PPI, the caller has to ensure the necessary information for the S3 resume, such as
the following, is available for the S3 resume boot path:

• EFI_ACPI_S3_RESUME_SCRIPT_TABLE script table. Type
EFI_ACPI_S3_RESUME_SCRIPT_TABLE is defined in the Intel® Platform Innovation
Framework for EFI Boot Script Specification.

• OS waking vector.
• The reserved memory range to be used for the S3 resume.

Otherwise, the S3 resume boot path may fail.

Draft for Review Code Definitions

Version 0.9 September 2003 27

EFI_PEI_S3_RESUME_PPI.S3RestoreConfig()

Summary
Restores the platform to its preboot configuration for an S3 resume and jumps to the OS waking
vector.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG) (

IN EFI_PEI_SERVICES **PeiServices
);

Parameters
PeiServices

Pointer to the PEI Services Table. Type EFI_PEI_SERVICES is defined in the
Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core Interface
Specification (PEI CIS).

Description
This function will restore the platform to its preboot configuration that was prestored in
EFI_ACPI_S3_RESUME_SCRIPT_TABLE and transfer control to OS waking vector.

Upon invocation, this function is responsible for locating the following information before jumping
to OS waking vector:

• ACPI table
• S3 resume boot script table
• Any other information that it needs

All this necessary information should have been previously prepared by the
EFI_ACPI_S3_SAVE_PROTOCOL.S3Save() function on a normal boot path. The
S3RestoreConfig() function then executes the prestored boot script table by calling
EFI_PEI_BOOT_SCRIPT_EXECUTER_PPI.Execute() and transitions the platform to the
preboot state. Finally, this function transfers control to the OS waking vector. If the OS supports
only a real-mode waking vector, this function will switch from flat mode to real mode before
jumping to the waking vector.

If all platform preboot configurations are successfully restored and all other necessary information
is ready, this function will never return and instead will directly jump to the OS waking vector. If
this function returns, it indicates that the attempt to resume from the ACPI S3 sleep state failed.

Status Codes Returned
EFI_ABORTED Execution of the S3 resume boot script table failed.

EFI_NOT_FOUND Some necessary information that is used for the S3 resume boot
path could not be located.

	Intel® Platform Innovation Framework for EFI S3 Resume Boot Path Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Goals
	Requirements
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	PPI Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Assumptions
	Multiple Phases of Platform Initialization
	Process of Platform Initialization

	Restoring the Platform
	Restoring the Platform
	Phases in the S3 Resume Boot Path
	SEC and the S3 Resume Boot Path
	PEI
	PEI and the S3 Resume Boot Path
	Saving Configuration Data in PEI

	DXE
	DXE and the S3 Resume Boot Path
	Framework Boot Script
	Framework Boot Script
	Boot Script Save Protocol

	S3 Resume PPI and DXE IPL PPI

	3. Code Definitions
	Introduction
	ACPI S3 Save Protocol
	EFI_ACPI_S3_SAVE_PROTOCOL
	EFI_ACPI_S3_SAVE_PROTOCOL.GetLegacyMemorySize()
	EFI_ACPI_S3_SAVE_PROTOCOL.S3Save()

	S3 Resume PPI
	EFI_PEI_S3_RESUME_PPI
	EFI_PEI_S3_RESUME_PPI.S3RestoreConfig()

