
Implementing Fractional PLL Reconfiguration with
Altera PLL and Altera PLL Reconfig IP Cores

2019.10.14

AN-661 Subscribe Send Feedback

You can use the 28-nm devices (Arria® V, Cyclone® V, and Stratix® V device families) to implement
fractional phase-locked loop (PLL) reconfiguration and dynamic phase shift for fractional PLLs with the
Altera PLL and Altera PLL Reconfig IP cores in the Intel® Quartus® Prime software.

Fractional PLLs use divide counters and different voltage-controlled oscillator (VCO) taps to perform
frequency synthesis and phase shifts. For example, you can reconfigure the counter settings and
dynamically phase-shift the fractional PLL (fPLL) output clock in the PLLs of 28-nm devices. You can also
change the charge pump and loop filter components, which dynamically affect the fractional PLL
bandwidth. You can use these fPLL components to update the clock frequency, fPLL bandwidth, and phase
shift in real time, without reconfiguring the entire FPGA.

Related Information

• Design Example 1: PLL Reconfiguration with Altera PLL Reconfig IP Core to Reconfigure M, N,
and C Counters

• Design Example 2: PLL Reconfiguration with Altera PLL Reconfig IP Core to Perform Dynamic
Phase Shift

• Design Example 3: PLL Reconfiguration with Altera PLL Reconfig IP Core using Qsys Design Flow
• Design Example 4: Dynamic Phase Shift with Altera PLL IP Core
• Design Example 5: .mif Streaming Reconfiguration
• PLL Reconfiguration Calculator
• .tcl Script to Stitch Two .mif Files

Fractional PLL Reconfiguration in 28-nm Devices
The fPLLs in 28-nm devices also support integer PLL. fPLLs provide robust clock management and
synthesis for device clock management, external system clock management, and high-speed I/O interfaces.

The fPLLs in 28-nm devices support dynamic reconfiguration. While the device is in user mode, you can
download a new fPLL configuration in real time without reconfiguring the entire FPGA.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice.
Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information
and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=AN-661
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20(AN-661%202019.10.14)%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfig_mnc.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfig_mnc.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfig_dps.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfig_dps.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfig_qsys.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_dynamicphaseshift.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_mifstreaming.qar
https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfiguration_calculator.xlsx
https://www.intel.com/content/dam/altera-www/global/en_US/others/literature/an/merge_mif.tcl
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


The following fPLL components are reconfigurable in real time using the dynamic reconfiguration IP core:

• Post-scale output counter (C)
• Feedback counter (M)
• Prescale counter (N)
• Charge pump current (ICP), and loop-filter components (R, C)

Note: The Intel Quartus Prime software version 12.0 and later support ICP, R, and C reconfiguration.
• Dynamic phase shifting of each counter
• Fractional division (MFRAC) for Delta Sigma Modulator (DSM)

Applications that operate at multiple frequencies can benefit from fPLL reconfiguration in real time. fPLL
reconfiguration is also beneficial in prototyping environments, allowing you to sweep fPLL output
frequencies and adjusting the clock output phase at any stage of your design. You can also use this feature
to adjust clock-to-out (tCO) delays in real time by changing the output clock phase shift.

Implementing Fractional PLL Reconfiguration on 28-nm Devices Using the Intel
Quartus Prime Software

You can use the Altera PLL Reconfig IP core to enable reconfiguration circuitry in the Altera PLL IP core
instantiation in your design.

The Altera PLL Reconfig IP core simplifies the fractional PLLs reconfiguration process. The Altera PLL
Reconfig IP core interacts with a user control logic and a bus that connects directly to the Altera PLL
instance using the Avalon® Memory-Mapped (Avalon-MM) interface.

Connectivity between Altera PLL and Altera PLL Reconfig IP Cores

Figure 1: Connectivity between Altera PLL and Altera PLL Reconfig IP Cores in the Intel Quartus Prime
Software

2 Implementing Fractional PLL Reconfiguration on 28-nm Devices Using the Intel
Quartus Prime Software

AN-661
2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Connecting Altera PLL and Altera PLL Reconfig IP Cores

To connect the Altera PLL and Altera PLL Reconfig instances in your design, follow these steps:

1. Connect the reconfig_to_pll[63:0] bus on the Altera PLL Reconfig instance to the
reconfig_to_pll[63:0] bus on the Altera PLL instance.

2. Connect the reconfig_from_pll[63:0] bus on the Altera PLL instance to the
reconfig_from_pll[63:0] bus on the Altera PLL Reconfig instance.

3. Connect the mgmt_clk signal to a clock source. The mgmt_clk signal can be a free running clock,
eliminating the need to control the start and stop of the mgmt_clk signal.

4. To perform Avalon read or write operations, connect the mgmt_reset, mgmt_read_data[31:0],
mgmt_write, mgmt_address[5:0], mgmt_write_data[31:0] buses, and the mgmt_wait_request and
mgmt_read signals to user control logic.

Avalon-MM Signals in Altera PLL Reconfig IP Core

The control interface for the Altera PLL Reconfig IP core is an Avalon-MM slave interface, which the
master user logic controls. External user logic uses these Avalon ports to reconfigure the fractional PLL
settings directly.

Table 1: Avalon-MM Signals in Altera PLL Reconfig IP Core

Logic are sampled with rising edge of the clock. The first rising edge after deassertion of the waitrequest
signal samples a read or write command.

Port Direction Description

mgmt_read_data[31:0] Output Data read from the Altera PLL Reconfig IP core when you
assert the mgmt_read signal.

mgmt_write_data[31:0] Input Data written to the Altera PLL Reconfig IP core when you
assert the mgmt_write signal.

mgmt_address[5:0] Input Specifies the address of the memory mapped register for a
read or write operation.

mgmt_read Input Active high signal. Asserted to indicate a read operation.
When present, read data is available on the mgmt_read_data
bus.

mgmt_write Input Active high signal. Asserted to indicate a write operation.
When present, the mgmt_write_data bus requires write
data.

mgmt_reset Input Active-high signal that resets all PLL settings to their
initial .sof file values.

mgmt_waitrequest Output Active high signal. When the Altera PLL Reconfig IP core
asserts this signal, the IP core ignores read or write
operations.

AN-661
2019.10.14 Connecting Altera PLL and Altera PLL Reconfig IP Cores 3

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Registers and Counters Settings

Fractional PLL Dynamic Reconfiguration Registers and Settings

Table 2: Fractional PLL Dynamic Reconfiguration Registers and Settings

Register Name Register
Size

Address
(Binary)

Counter Bit Setting Read/Write

Mode Register 1 000000 • Write 0 for waitrequest mode
• Write 1 for polling mode

Read/Write

Status Register 1 000001 • 0 = busy
• 1 = ready

Read

Start Register 1 000010 Write either 0 or 1 to start fractional PLL
reconfiguration or dynamic phase shift

Write

N Counter 18 000011 • N_counter[7:0] = low_count
• N_counter[15:8] = high_count
• Total_div = high_count + low_count
• N_counter[16] = bypass enable (1)

• N_counter[16] = 0, fREF = fIN/Total_div
• N_counter[16] = 1, fREF = fIN (N counter

is bypassed)
• N_counter[17] = odd division (1)

• N_counter[17] = 0, even division, duty
cycle = high_count/Total_div

• N_counter[17] = 1, odd division, duty
cycle = (high_count – 0.5)/Total_div

Read/Write

M Counter 18 000100 • M_counter[7:0] = low_count
• M_counter[15:8] = high_count
• Total_div = high_count + low_count
• M_counter[16] = bypass enable (1)

• M_counter[16] = 0, fFB = fVCO/Total_div
• M_counter[16] = 1, fFB = fVCO (M counter

is bypassed)
• M_counter[17] = odd division (1)

• M_counter[17] = 0, even division, duty
cycle = high_count/Total_div

• M_counter[17] = 1, odd division, duty
cycle = (high_count – 0.5)/Total_div

Read/Write

(1) The bypass enable bit, even division bit, and odd division bit of the M, N, and C counters support write
operation only.

4 Registers and Counters Settings
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Register Name Register
Size

Address
(Binary)

Counter Bit Setting Read/Write

C Counter 23 000101 • C_counter[7:0] = low_count
• C_counter[15:8] = high_count
• Total_div = high_count + low_count
• C_counter[16] = bypass enable (1)

• C_counter[16] = 0, fOUT = fVCO/Total_
div

• C_counter[16] = 1, fOUT = fVCO (C
counter is bypassed)

• C_counter[17] = odd division (1)

• C_counter[17] = 0, even division, duty
cycle = high_count/Total_div

• C_counter[17] = 1, odd division, duty
cycle = (high_count – 0.5)/Total_div

• C_counter[22:18] is a five bit binary
number ranging from 00000 to 10001 (0–17)
to select which C counter to change. For
example, if you want to change C2, set C_
counter[22:18] to 00010.

Read/Write
(2)

Dynamic_
Phase_Shift

22 000110 • Dynamic_Phase_Shift[15:0] = number of
shifts

• Number of shifts = the number of times
you want to shift the output clock. Every
time you perform a shift, the actual
amount of shift is 1/8 of the VCO period.
For example, if the VCO is running at 1.6
GHz, each phase shift equals to 78.125 ps.

• Dynamic_Phase_Shift[20:16] = cnt_
select.

• cnt_select is a five bit value that specifies
which counter output is shifted. For more
information about cnt_select mapping,
refer to the Dynamic Phase Shift Counter
and cnt_select (Dynamic_Phase_
Shift[20:16]) Bit Setting table.

• Dynamic_Phase_Shift[21] = up_dn

• up_dn = The direction of the shift.
• up_dn = 1 (positive phase shift).
• up_dn = 0 (negative phase shift).

Write

(2) For C counter read operation, use the address for the selected counter in the Counter Address and Bit
Setting During Read Operation table.

AN-661
2019.10.14 Fractional PLL Dynamic Reconfiguration Registers and Settings 5

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Register Name Register
Size

Address
(Binary)

Counter Bit Setting Read/Write

M Counter
Fractional Value
(K)

32 000111 Fractional part of the M counter (for DSM). The
actual fractional values are:

• MFRAC=K[(X-1):0]/2X (X = 8, 16,24, or 32)
(3)

• M counter final value = Total_div for M
Counter + MFRAC

Write

Bandwidth
Setting

4 001000 For the bandwidth settings, refer to the PLL
Reconfiguration Calculator.

Read/Write

Charge Pump
Setting

3 001001 For the charge pump settings, refer to the PLL
Reconfiguration Calculator.

Read/Write

VCO Post
Divide Counter
Setting (4)

1 011100 Enable or disable /2 divider for VCO to keep
VCO frequency in operating range.

• 0: VCO DIV = 2
• 1: VCO DIV = 1

Read/Write

.mif Base
Address

9 011111 Base address for the start of a PLL profile in a
Memory Initialization File (.mif).

Write

Related Information

• Counter Address and Bit Setting During Read Operation on page 7
Provides the address for the selected C counter.

• Dynamic Phase Shift Counter and cnt_select (Dynamic_Phase_Shift[20:16]) Bit Setting on page
7
Provides the cnt_select and the corresponding dynamic phase shift counter.

• PLL Reconfiguration Calculator

(3) K counter reconfiguration is effective only when you configure the PLL in fractional mode prior to reconfigu‐
ration. For optimum performance, set the MFRAC value between 0.05 and 0.95. X = fractional carry bit,
determined in the Altera PLL parameter editor. The default value for X is 24 and cannot be reconfigured
during PLL reconfiguration.

(4) The VCO frequency reported by the Intel Quartus Prime software takes into consideration the VCO post-
scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than
the fVCO specification.

6 Fractional PLL Dynamic Reconfiguration Registers and Settings
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

https://www.intel.com/content/dam/www/programmable/us/en/others/literature/an/pll_reconfiguration_calculator.xlsx
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Counter Address and Bit Setting During Read Operation

Table 3: Counter Address and Bit Setting During Read Operation

Counter Name Address (Binary) Counter Bit Setting

C0 001010

• C_counter[7:0] = low_count
• C_counter[15:8] = high_count
• Total_div = high_count + low_count

C1 001011
C2 001100
C3 001101
C4 001110
C5 001111
C6 010000
C7 010001
C8 010010
C9 010011
C10 010100
C11 010101
C12 010110
C13 010111
C14 011000
C15 011001
C16 011010
C17 011011

Dynamic Phase Shift Counter and cnt_select (Dynamic_Phase_Shift[20:16]) Bit Setting

Table 4: Dynamic Phase Shift Counter and cnt_select (Dynamic_Phase_Shift[20:16]) Bit Setting

Dynamic Phase Shift
Counter

Dynamic_Phase_Shift[20:16] Bit
Setting

Device Family

C0 5'b00000 Arria V, Cyclone V, and Stratix V
C1 5'b00001 Arria V, Cyclone V, and Stratix V
C2 5'b00010 Arria V, Cyclone V, and Stratix V
C3 5'b00011 Arria V, Cyclone V, and Stratix V
C4 5'b00100 Arria V, Cyclone V, and Stratix V
C5 5'b00101 Arria V, Cyclone V, and Stratix V
C6 5'b00110 Arria V, Cyclone V, and Stratix V
C7 5'b00111 Arria V, Cyclone V, and Stratix V

AN-661
2019.10.14 Counter Address and Bit Setting During Read Operation 7

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Dynamic Phase Shift
Counter

Dynamic_Phase_Shift[20:16] Bit
Setting

Device Family

C8 5'b01000 Arria V, Cyclone V, and Stratix V
C9 5'b01001 Arria V and Stratix V
C10 5'b01010 Arria V and Stratix V
C11 5'b01011 Arria V and Stratix V
C12 5'b01100 Arria V and Stratix V
C13 5'b01101 Arria V and Stratix V
C14 5'b01110 Arria V and Stratix V
C15 5'b01111 Arria V and Stratix V
C16 5'b10000 Arria V and Stratix V
C17 5'b10001 Arria V and Stratix V

All C counters 5'b11111 Arria V, Cyclone V, and Stratix V
M counter 5'b10010 Arria V, Cyclone V, and Stratix V

Reconfiguring Fractional PLL Settings with Avalon-MM Interface

You can dynamically reconfigure fPLLs with the Avalon-MM interface. To perform dynamic reconfigura‐
tion, follow these steps:

1. Through an Avalon write operation, write to the mode register a value of 0 or 1 at the startup of the
Altera PLL Reconfig IP core. The mode register determines whether the Altera PLL Reconfig IP core
operates in waitrequest or polling mode.

2. Specify the element and its new value through an Avalon write operation.
For more information about the address for each reconfigurable element, refer to Fractional PLL
Dynamic Reconfiguration Registers and Settings, and Dynamic Phase Shift Counter and cnt_select
(Dynamic_Phase_Shift[20:16]) Bit Setting tables.

3. Repeat Step 2 for all the reconfigurable elements (N, M, C counters, MFRAC value, and others) that you
want to change.

4. Through an Avalon write operation, write either 0 or 1 to the start register. Writing to the start register
triggers the dynamic reconfiguration, the dynamic phase shift, or both:

• If you set the mode register to 0 (waitrequest mode) in Step 1, the Altera PLL Reconfig IP core
asserts the mgmt_waitrequest signal until after the reconfiguration. You can only perform another
Avalon read or write operation after the Altera PLL Reconfig IP core deasserts the
mgmt_waitrequest signal.

• If you set the mode register to 1 (polling mode) in Step 1, the Altera PLL Reconfig IP core writes 0
(busy) to the status register. You can poll bit 0 of the status register periodically by performing
Avalon read operations to ensure that the reconfiguration is complete. The Altera PLL Reconfig IP
core ignores any new reconfiguration instructions (Avalon write operations) until a value of 1 has
been read from the status register.

Lock the fractional PLL to the reference clock before you perform the dynamic reconfiguration or the
dynamic phase shifting.

8 Reconfiguring Fractional PLL Settings with Avalon-MM Interface
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information

• Fractional PLL Dynamic Reconfiguration Registers and Settings on page 4
• Dynamic Phase Shift Counter and cnt_select (Dynamic_Phase_Shift[20:16]) Bit Setting on page 7

Waveform Example for Dynamic Reconfiguration with Avalon-MM Interface

Figure 2: Waveform Example for Performing Dynamic Reconfiguration in Reconfiguring MFRAC, M, N, and C
Counters

00h 04h 07h 03h

00000001h 00001212h 00444444h 00000202h 00000303h 00040404h

05h

(1) (2) (3) (4) (5) (6)

00000000h

mgmt_clk

mgmt_address[5:0]

mgmt_writedata[31:0]

mgmt_write

mgmt_read

mgmt_readdata[31:0]

08h 09h 02h

00000006h 00000003h 00000001h

(7) (8) (9)

(10)

01h

don’t care

00000001h

The operation of the waveform example is as follows:

1. Avalon-MM writes to the mode register (address = 0x00) to set the Altera PLL Reconfig IP core to
operate in polling mode.

2. Avalon-MM writes to the M counter register (address = 0x04) to reconfigure the M counter to 36.
3. Avalon-MM writes to the M counter Fractional Value (K) register (address = 0x07) to reconfigure MFRAC

to 0.2666667 (decimal value).
4. Avalon-MM writes to the N counter register (address = 0x03) to reconfigure the N counter to 4.
5. Avalon-MM writes to the C counter register (address=0x05) to reconfigure the C0 counter to 6

(high_count = 3, low_count = 3, even division).
6. Avalon-MM writes to the C counter register (address=0x05) to reconfigure the C1 counter to 8

(high_count = 4, low_count = 4, even division).
7. Avalon-MM writes to the bandwidth setting register (address=0x08) to reconfigure the bandwidth

setting to medium bandwidth.
8. Avalon-MM writes to the charge pump setting register (address=0x09) to reconfigure the charge pump

setting to medium bandwidth.
9. Avalon-MM writes to the start register (address = 0x02) to start the reconfiguration.
10.Avalon-MM reads from the status register (address = 0x01) until a value of 1 is read from the status

register, indicating a successful reconfiguration.

.mif Streaming Reconfiguration

.mif streaming allows you to dynamically reconfigure PLLs through the Altera PLL Reconfig IP core
using predefined settings saved in an on-chip RAM.

To start reconfiguration via .mif streaming, follow these steps:

1. Write the base address in the ROM where the .mif file of the PLL is located.
You can have multiple .mif files in a ROM. You just need to use a different address location in the
ROM for another .mif streaming as follows:

AN-661
2019.10.14 Waveform Example for Dynamic Reconfiguration with Avalon-MM Interface 9

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Writedata = base address in ROM.
• Write address = .mif address (011111).

2. Write to the Start register to begin.
3. The Altera PLL Reconfig IP core then starts reading the .mif file for new settings and values, changing

the PLL accordingly.
4. The Altera PLL Reconfig IP core generates signals when all changes are done and PLL is locked.

Stitching Two .mif Files Generated by the Intel Quartus Prime Software

To stitch two .mif files generated by the Intel Quartus Prime software with a .tcl script, follow these
steps:

1. Source the merge_mif.tcl in .tcl console.
2. Type the following command to stitch two .mif files (for example A.mif and B.mif) into

output.mif.
Command: stitch A.mif B.mif [output.mif]
If you do not specify the optional parameter, [output.mif], the .tcl script defaults to merged.mif.
In the output.mif, the content of B.mif comes after A.mif.

10 Stitching Two .mif Files Generated by the Intel Quartus Prime Software
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


.mif Streaming Reconfiguration with Altera PLL Reconfig IP Core

Figure 3: Altera PLL Reconfig IP Core with .mif Streaming Enabled

.mif Reader
addr
write
writedata
read
readdata
waitrequest

addr
write
writedata
read
readdata
waitrequest

N

M

C

MIF Address

ALTERA_PLL_RECONFIG IP Core

addr

write

writedata

read

readdata
waitrequest

M20K
mif_start

mif_base_addr
busy

ALTERA_PLL_RECONFIG Top

Internal
Registers

To/From PLL

.mif streaming is a subsystem generated in the Altera PLL Reconfig IP core. If you set the Enable MIF
Streaming option to 0, .mif streaming is not generated and the top level module's ports map directly to
the Altera PLL Reconfig IP core. If you set the Enable MIF Streaming option to 1, the .mif reader is
instantiated in the top-level of the Altera PLL Reconfig module.

When you write to the .mif Base Address register and starts the .mif streaming operation, the Altera
PLL Reconfig IP core signals the .mif reader to begin the operation. waitrequest signal is asserted until
the operation is complete.

.mif streaming switches the Altera PLL Reconfig IP core to waitrequest mode and asserts the
waitrequest signal until the IP core completed the operation. At this point, .mif streaming restores the
previous mode (waitrequest or polling), unless it is explicitly changed by the .mif file.

AN-661
2019.10.14 .mif Streaming Reconfiguration with Altera PLL Reconfig IP Core 11

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


.mif File Format

The .mif file stores the commands that you want to send to the Altera PLL Reconfig IP core. .mif
streaming then simulates the commands the user logic would otherwise send to the Altera PLL Reconfig
IP core. These commands are address-data pairs in the .mif file specifying the setting to be reconfigured
to the new value. Addresses are stored as operation codes (opcodes) in the lower six bits of each entry
word.

Figure 4: Single .mif File Format for .mif Streaming Reconfiguration

RSVD
RSVD

Opcode = SOM
Opcode = M_counter

DATA M_counter
RSVD Opcode = N_counter

DATA N_counter
RSVD Opcode = Bandwidth

DATA Bandwidth

RSVD Opcode = EOM

31 5 0 MIF_BASE_ADDR

.mif Streaming Reconfiguration Operation Codes

Table 5: .mif Streaming Reconfiguration Operation Codes

Operation Name Operation Code Description

Start of .mif (SOM) 111110 Indicates start of single PLL configuration
End of .mif (EOM) 111111 Indicates end of single PLL configuration

Each .mif streaming reconfiguration must be indicated with a SOM and EOM opcodes.

The remaining opcodes are the addresses for each of the registers in the Altera PLL Reconfig IP core.

You can save multiple PLL configurations in a .mif file if you mark the SOM or EOM opcodes appropri‐
ately. The .mif reader reads the settings from an M20K RAM block, which has default address width = 9
bits, data width = 32 bits (total words = 512). These sizes can change as parameters are passed to the top-
level module. For .mif streaming reconfiguration, data width must be 32 bits to match the Altera PLL
Reconfig IP core.

The M20K is initialized by MIF_FILE_NAME, also a top-level parameter. On the start of .mif streaming
operation, the .mif reader checks the .mif base address in the M20K RAM block for a SOM opcode.
The .mif reader continues to read the file until EOM opcode is reached.

You can generate a .mif file independently with a PLL .mif configuration file generated by the Altera
PLL parameter editor. The generated .mif file stores the entire PLL profile.

You can also construct your own .mif files by stitching together existing .mif files or writing your own
commands (following the .mif syntax). This allows what settings are stored in the M20K for future
reconfiguration.

12 .mif File Format
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Fractional PLL Dynamic Phase Shifting in the Intel Quartus Prime
Software

The dynamic phase shifting feature allows the output phases of individual fractional PLL outputs to be
dynamically adjusted relative to each other and to the reference clock. The smallest incremental step
equals to 1/8th of the VCO period. The output clocks are active during this dynamic phase-shift process.

You can use the following methods to perform dynamic phase shifting:

• Altera PLL Reconfig IP core
• Dynamic phase-shifting circuitry using the Altera PLL IP core directly

Note: In the Intel Quartus Prime software version 11.1 SP2, you can only perform dynamic phase shifting
using the Altera PLL Reconfig IP core. However, you can perform dynamic phase shifting directly
using the Altera PLL IP core in the Intel Quartus Prime software version 12.0 and later.

Performing Dynamic Phase Shifting with Altera PLL IP Core
You can directly perform dynamic phase shift by enabling the dynamic phase shift ports. To perform one
dynamic phase shift, follow these steps:

1. Set the updn and cntsel ports.
2. Assert the phase_en port for at least two scanclk cycles. Each phase_en pulse enables one phase shift.
3. Deassert the phase_en port after phase_done goes low.

The updn, cntsel, and phase_en ports are synchronous to scanclk. The phase_done signal going low is
synchronous to the scanclk signal, but it is asynchronous to the scanclk signal when going high.
Depending on the VCO and scanclk frequencies, the low time of the phase_done port may be greater
than or less than one scanclk cycle. Each phase_en pulse enables one phase shift. If you want to perform
multiple phase shifts, you must assert the phase_en signal multiple times. You can only assert the
phase_en signal after the phase_done signal goes from low to high.

Waveform Example for Dynamic Phase Shift with Altera PLL IP Core

Figure 5: Waveform Example for Dynamic Phase Shift with Altera PLL IP Core

00h

clk

updn

cntsel

phase_en

phase_done

01h 00h

(1)

(2) (3) (4) (5)

AN-661
2019.10.14 Fractional PLL Dynamic Phase Shifting in the Intel Quartus Prime Software 13

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The operation of the waveform example is as follows:

1. Set the cntsel port to logical counter C1 and the updn port to positive phase shift direction.
2. Assert the phase_en port to begin the first phase shift operation on logical counter C1.
3. Deassert the phase_en port after phase_done goes low.
4. Assert the phase_en port again to begin the second phase shift operation.
5. Deassert the phase_en port after phase_done goes low.

Dynamic Phase Shift Signals in Altera PLL IP Core

Table 6: Dynamic Phase Shift Signals in Altera PLL IP Core

Port Direction Description

phase_en Input Transition from low to high enables dynamic phase shifting, one phase shift
per transition from low to high.

scanclk Input Free running clock from the core in combination with phase_en to enable
and disable dynamic phase shifting.

updn Input Selects dynamic phase shift direction; 1= positive phase shift; 0 = negative
phase shift. The PLL registers the signal on the rising edge of scanclk.

cntsel Input Logical Counter Select(5)(6). Five bits decoded to select one of the C counters
for phase adjustment. The PLL registers the signal on the rising edge of
scanclk.

phase_

done

Output When asserted, this port informs the core-logic that the phase adjustment is
complete and the PLL is ready to act on a possible next adjustment pulse.
Asserts based on internal PLL timing. Deasserts on the rising edge of
scanclk.

Related Information
Logical Counter Bit Setting on page 14

Logical Counter Bit Setting

Table 7: Logical Counter Bit Setting

Logical Counter cntsel[4:0] Bit Setting

Logical counter C0 5'b00000
Logical counter C1 5b'00001
Logical counter C2 5'b00010
Logical counter C3 5'b00011
Logical counter C4 5'b00100

(5) For the corresponding address of a selected logical counter, refer to the Logical Counter Bit Setting table .
(6) For the Intel Quartus Prime software versions prior to 13.1, cntsel refers to physical counter. For the

Intel Quartus Prime software version 13.1 and later, cntsel refers to logical counter. Refer to the Logical
Counter Bit Setting table for the cntsel bit setting for both physical counter and logical counter.

14 Dynamic Phase Shift Signals in Altera PLL IP Core
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Logical Counter cntsel[4:0] Bit Setting

Logical counter C5 5'b00101
Logical counter C6 5'b00110
Logical counter C7 5'b00111
Logical counter C8 5'b01000
Logical counter C9 5'b01001

Logical counter C10 5'b01010
Logical counter C11 5'b01011
Logical counter C12 5'b01100
Logical counter C13 5'b01101
Logical counter C14 5'b01110
Logical counter C15 5'b01111
Logical counter C16 5'b10000
Logical counter C17 5'b10001

Performing Dynamic Phase Shifting with Altera PLL Reconfig IP Core
To perform dynamic phase shifting, follow steps 1-4 in “Reconfiguring Fractional PLL Settings with
Avalon-MM Interface”, except in step 2, you only need to write to the Dynamic_Phase_Shift register.

Caution: If you assert the areset signal to fPLL after the dynamic phase shift, you lose all successful
phase adjustment with dynamic phase shift in user mode.

Related Information
Reconfiguring Fractional PLL Settings with Avalon-MM Interface on page 8

Waveform Example for Dynamic Phase Shift with Altera PLL Reconfig IP Core

Figure 6: Waveform Example for Dynamic Phase Shift with Altera PLL Reconfig IP Core

00h 06h 02h

00000001h 00210004h 00000001h

01h

don’t care

(1) (2) (3)

(4)

0000000h 00000001hdon’t care

mgmt_clk

mgmt_address[5:0]

mgmt_writedata[31:0]

mgmt_write

mgmt_read

mgmt_readdata[31:0]

AN-661
2019.10.14 Performing Dynamic Phase Shifting with Altera PLL Reconfig IP Core 15

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The operation of the waveform example is as follows:

1. Avalon writes to the mode register (address=0x00) to set the Altera PLL Reconfig IP core to operate in
polling mode.

2. Avalon writes to the dynamic phase shift register (address=0x06) to perform dynamic phase shift on C1
counter for four steps forward.

3. Avalon writes to the start register (address=0x02) to start dynamic phase shifting.
4. Avalon reads from the status register (address=0x01) until a value of 1 has been read from the status

register, indicating the dynamic phase shifting is complete.

Design Considerations
You must consider the following information when using fPLL reconfiguration:

• Changing prescale and feedback counter settings (M, N, MFRAC), charge pump/loop filter settings affects
the fractional PLL VCO frequency, which may require the fractional PLL to relock to the reference
clock.

• Changing the M counter phase shift setting changes the phase relationship of the output clocks with
respect to the fractional PLL reference clock, which also requires the fractional PLL to relock. Although
the exact effect of changing prescale and feedback counter settings (M, N) depends on the changes to the
settings, any changes require relocking.

• Adding phase shift using the M counter phase shift setting pulls in all the fractional PLL clock outputs
with respect to the reference clock. This effectively adds a negative phase shift because the M counter is
in the feedback path.

• When making changes to the loop elements (M, N, MFRAC, M counter phase, Icp, R, C), Altera
recommends disabling fractional PLL outputs to the logic array using the clkena signals available on
the ALTCLKCTRL IP core. This recommendation eliminates the possibility of an over frequency
condition affecting system logic while fractional PLL is regaining lock.

• Changing the K counter values is only effective if the PLL is in fractional mode before reconfiguration.
• Changing post-scale counters (C) and phase do not affect the fractional PLL lock status or VCO

frequency. The resolution of phase shift is a function of VCO frequency, with the smallest incremental
step equal to 1/8th of the VCO period.

• Altera recommends resynchronizing the fractional PLL using the areset signal if the phase relation‐
ship between output clocks is important. Always assert the areset signal after each mgmt_reset
operation or after each fPLL reconfiguration process, to reinitiate the fPLL locking process.

• Fractional PLL reconfiguration interface supports a free running mgmt_clk signal, eliminating the need
to precisely control the start and stop of mgmt_clk signal.

• Changing the M or N counter values affect all the output clock frequencies.
• C counters can also be reconfigured individually.
• You can perform phase shifting even if C counter is set to 1 and bypass is enabled.
• When the PLL has two clocks with 0 degree initial phase shift between the clocks, the Fitter synthesizes

away the second clock automatically. To prevent the clocks from merging, Altera recommends
manually performing location constraint for each of the PLL output counters which share the same
frequency and phase shift.

16 Design Considerations
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Readback counter operation needs at least three scanclk cycle latency.
• In waitrequest mode, the mgmt_waitrequest signal deasserts when PLL reconfiguration is complete. If

the PLL loses lock after reconfiguration is complete, assert the mgmt_waitrequest signal again until
the PLL locks. There may be a brief period after PLL reconfiguration is complete, but before the PLL
has lost lock, when the mgmt_waitrequest signal is de-asserted. Altera recommends allowing sufficient
time for the PLL to lock after PLL reconfiguration is complete before performing a new Avalon read or
write operation.

• In polling mode, the status register changes from 0 (busy) to 1 (ready) when PLL reconfiguration is
complete. If the PLL loses lock after reconfiguration is complete, the status register is at 0 (busy) until
the PLL locks. There may be a brief period after PLL reconfiguration is complete, but before the PLL
has lost lock, when the status register is at 1 (ready). Altera recommends allowing sufficient time for the
PLL to lock after PLL reconfiguration is complete before performing a new Avalon read or write
operation.

Using the Design Examples
The following sections describe the software requirements and the use of the design examples.

Software Requirement
You must install the following software in your PC:

• The Intel Quartus Prime software version 11.1 SP2 or later
• MegaCore IP Library version 11.1 or later (installed with the Intel Quartus Prime software)
• The Nios® II Embedded Design Suite (EDS)version 11.1 SP2 or later

Note: • Ensure that you extract the Intel Quartus Prime Archive File (.qar) of the design example.
• This application note assumes that you install the software in the default locations.

Design Example 1: PLL Reconfiguration with Altera PLL Reconfig IP Core to
Reconfigure M, N, and C Counters

The design example uses a 5SGXEA7 device. This design example consists of the Altera PLL and Altera
PLL Reconfig IP cores. The fPLL synthesizes two output clocks of 233.34 MHz, with 0 ps and 107 ps phase
shift on C0 and C1 output respectively. The input reference clock to the fPLL is 100 MHz.

The Altera PLL Reconfig IP core connects to a state machine to perform the required Avalon write and
read operations. A low pulse on the reset_SM pin starts the Avalon write and read sequence. After reconfi‐
guration, the fPLL operates with the following configuration:

• M counter = 36
• MFRAC = 0.2665
• N counter = 4
• C0 = 6 (high_count = 3, low_count = 3, even division)
• C1 = 8 (high_count = 4, low_count = 4, even division)
• Bandwidth setting = 0110 (for medium bandwidth)
• Charge pump setting = 010 (for medium bandwidth)

AN-661
2019.10.14 Using the Design Examples 17

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To run the test with the design example, perform these steps:

1. Download and restore the pll_reconfig_mnc.qar file.
2. Regenerate the Altera PLL and Altera PLL Reconfig instances in the design.
3. Change the pin assignment and I/O standard of the design example to match your hardware.
4. Recompile your design. Ensure that your design does not contain any timing violation after recompila‐

tion.
5. Open the SignalTap™ II File (.stp) and download the SRAM Object File (.sof).
6. Provide a low pulse on the reset_SM input pin to start the reconfiguration.

The expected C0 output frequency is 151.11 MHz and the expected C1 output frequency is 113.33 MHz.

Design Example 2: PLL Reconfiguration with Altera PLL Reconfig IP Core to Perform
Dynamic Phase Shift

This design example is similar to “Design Example 1”, except that this design example demonstrates the
dynamic phase shift feature of the fPLL with the Altera PLL Reconfig IP core. A low pulse on the
reset_SM pin starts the Avalon write and read sequence to dynamically phase shift the PLL output. After
completing the dynamic phase shifting successfully, the C1 output is phase-shifted for four forward steps.

To run the test with the design example, perform these steps:

1. Download and restore the pll_reconfig_dps.qar file.
2. Regenerate the Altera PLL and Altera PLL Reconfig instances in the design.
3. Change the pin assignment and I/O standard of the design example to match your hardware.
4. Recompile your design and ensure your design does not contain any timing violation after recompila‐

tion.
5. Open the .stp file and download the .sof file.
6. Provide a low pulse on the reset_SM input pin to start the reconfiguration.

Related Information
Design Example 1: PLL Reconfiguration with Altera PLL Reconfig IP Core to Reconfigure M, N, and C
Counters on page 17

Design Example 3: PLL Reconfiguration with Altera PLL Reconfig IP Core using Qsys
Design Flow

The design example for fPLL reconfiguration uses the Qsys design flow, targeting the 5SGXEA7 device.
The fPLL synthesizes four output clock of 106 MHz with 0 ps, 168 ps, 336 ps, and 505 ps on C0, C1, C5, and
C10 output respectively. The input frequency of the fPLL is 50 MHz.

To run the test with the design example, perform these steps (enter submenu):

1. Download and restore the pll_reconfig_qsys.qar file.
2. Change the pin assignment and I/O standard of the design example to match your hardware.
3. Regenerate the Qsys system in the design example.
4. Recompile your design and ensure your design does not contain any timing violation after recompila‐

tion.

18 Design Example 2: PLL Reconfiguration with Altera PLL Reconfig IP Core to Perform
Dynamic Phase Shift

AN-661
2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


5. Open the .stp file and download the .sof file.
6. Launch the Nios II Software Build Tools (SBT) for Eclipse to set up the Nios II project and compile the

test program.
7. Download the Executable and Linking Format File (.elf) to run the example test.

Qsys System and Components

Figure 7: Qsys System and Components for Design Example 3
The C code program in the Nios II processor controls the fPLL reconfiguration IP core. This program
consists of a simple loop that receives and executes command from the JTAG UART.

Main Menu Commands in Qsys

Table 8: Main Menu Commands in Qsys

Command Description

Switch A This command reconfigures the M counter to 26 (high_count = 13, low_count =
13).

Switch B This command reconfigures the N counter to 4 (high_count = 2, low_count = 2).
Switch C This command reconfigures the C0 to 16 with 62.5% duty cycle (high_count =

10, low_count = 6).

AN-661
2019.10.14 Qsys System and Components 19

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Command Description

Switch D This command reconfigures the C1 to 20 with 30% duty cycle (high_count = 6,
low_count = 14).

Switch E This command reconfigures the K counter to MFRAC= 0.375.
Switch F This command performs dynamic phase shift on C0 for three steps forward.
Switch G This command performs dynamic phase shift on C1 for seven steps backward.
Switch H This command reconfigures the M counter and MFRAC value to 68.75, N counters

to 4 and C0 to 8 (with 37.5% duty cycle).
Switch I This command enters submenu to readback register bit. For the commands in the

submenu, refer to the Submenu Commands in Qsys table.

Related Information
Submenu Commands in Qsys on page 20

Submenu Commands in Qsys

Table 9: Submenu Commands in Qsys

Command Description

Switch A This command readback value in N counter register.
Switch B This command readback value in M counter register.
Switch C This command readback value in C0 counter register.
Switch D This command readback value in C1 counter register.
Switch E This command readback value in bandwidth setting register.
Switch F This command readback value in charge pump setting register.
Switch R This command returns to main menu. For the commands in the main menu,

refer to Main Menu Commands in Qsys table.

Related Information
Main Menu Commands in Qsys on page 19

Design Example 4: Dynamic Phase Shift with Altera PLL IP Core
Caution: This design example is only supported by the Intel Quartus Prime software version 13.1 and

later due to IP upgrade from physical counter to logical counter.

This design example uses a 5SGXEA7 device. This design example consists of the Altera PLL IP core. The
fPLL synthesizes two output clocks of 233.34 MHz, with 0 ps and 107 ps phase shift on C0 and C1 outputs,
respectively. The input reference clock to the fPLL is 100 MHz. The Altera PLL IP core connects to a state
machine to perform direct dynamic shift operation. A low pulse on the rest_sm pin starts the direct
dynamic phase shift sequence.

20 Submenu Commands in Qsys
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


To run the test with the design example, follow these steps:

1. Download and restore pll_dynamicphaseshift.qar file.
2. Regenerate the Altera PLL instances in the design.
3. Change the pin assignment and I/O standard of the design example to match your design.
4. Recompile the design and ensure that the design does not contain any violation after compilation.
5. Open the .stp file and download the .sof file.
6. Provide a low pulse on the reset_sm input pin to start the dynamic phase shift.

Design Example 5: .mif Streaming Reconfiguration
This design example is similar to “Design Example 1”, except that this design example demonstrates
the .mif streaming reconfiguration of the fPLL with the Altera PLL Reconfig IP Core. This design
example consists of the Altera PLL and Altera PLL Reconfig IP cores. The fPLL synthesizes two output
clocks of 200.0 MHz, with 0 degree and 7.5 degree phase shift on C0 and C1 output respectively. The input
reference clock to the fPLL is 100 MHz.

A low pulse on the reset_SM pin starts the Avalon write operation to enable the .mif streaming reconfi‐
guration. After completing the .mif streaming reconfiguration, the C0 and C1 output frequencies are
changed to 100 MHz and 300 MHz respectively.

To run the test with the design example, perform these steps:

1. Download and restore the pll_mifstreaming.qar file.
2. Regenerate the Altera PLL and Altera PLL Reconfig instances in the design.
3. Change the pin assignment and I/O standard of the design example to match your hardware.
4. Recompile your design and ensure your design does not contain any timing violation after recompila‐

tion.
5. Open the stgkp.stp file and download the .sof file.
6. Provide a low pulse on the reset_SM input pin to start the reconfiguration.

Related Information
Design Example 1: PLL Reconfiguration with Altera PLL Reconfig IP Core to Reconfigure M, N, and C
Counters on page 17

Tutorial Walkthrough
This tutorial walkthrough guides you on on creating your design and running the tests. This tutorial
assumes that you are familiar with the Intel Quartus Prime software and the Qsys system integration tool.

Creating a New Intel Quartus Prime Project
In the Intel Quartus Prime software, create a new Intel Quartus Prime project that targets a Stratix V
device.

Note: Ensure that your project path does not include any spaces or extended character.

Related Information
Managing Files in a Project, Intel Quartus Prime Help
Provides more information about creating a new Intel Quartus Prime project.

AN-661
2019.10.14 Design Example 5: .mif Streaming Reconfiguration 21

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Creating the Qsys System
To create a Qsys system, follow these steps:

1. On the Tool menu, click Qsys.
2. Add the Qsys components that your design requires.

a. To create an Altera PLL instance, perform these steps:

1. Expand PLL, select Altera PLL, and click Add.
2. Set Reference Clock Frequency to 50.0 MHz.
3. Select the number of output clock and set its output frequency and phase relationship.
4. In the Settings tab, turn on the Enable dynamic reconfiguration of PLL option.
5. Click Finish.

b. To create an Altera PLL Reconfig instance, perform these steps:

1. Expand PLL, select Altera PLL Reconfig, and click Add.
2. Click Finish.

c. Under Component Library > Memories and Memory Controllers > On-Chip, select On-Chip
Memory (RAM or ROM), and then click Add.

1. For Total Memory size, type 65536 bytes.
2. Click Finish.

d. Under Component Library, expand Embedded Processors, select Nios II Processor and click Add.

1. Select Nios II/s.
2. Set Reset Vector Offset to 0x00 and Exception Vector Offset to 0x20.
3. Click Finish.

e. Under Interface Protocols > Serial, select JTAG UART and click Add.

1. Under Write FIFO and Read FIFO, for the Buffer depth (bytes) select 64, and for IRQ threshold
type 8.

2. For Prepare interactive windows, select INTERACTIVE_INPUT_OUTPUT to open the
interactive display window during simulation.

3. Click Finish.
f. In the Project Setting tab, for Clock Crossing Adapter Type, select Auto.

3. In the System Contents tab, make the appropriate bus connection and IRQ lines as shown in Qsys
System and Components for Design Example 3 figure.
If there are warnings about overlapping addresses, on the System menu, click Assign Base Addresses.
If there are warnings about overlapping IRQ, on the System menu, click Assign Interrupt numbers.

4. After setting up the connections, right-click the Nios II Processor and select Edit to open the Nios II
Processor parameter editor. In the Core Nios II tab, for Reset vector memory and Exception vector
memory, select onchip_memory2_0.s1, and click Finish.

5. On the File menu, click Save.
6. In the Generation tab, under Synthesis, turn on Create HDL design files for synthesis and Create

block symbol file (.bsf).
7. Click Generate.

22 Creating the Qsys System
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information
Qsys System and Components on page 19
Provides more information about the appropriate bus connection and IRQ lines.

Creating the Top-Level Design File
You can consider the Qsys system as a component in your design. The Qsys system can be the only
component or one of many components. Hence, when your Qsys system is complete, you must add the
system to your top-level design.

The top-level design can be in your preferred HDL language or a .bdf schematic design.

In this walkthrough, the top-level design is a simple wrapper file around the Qsys system with no
additional components. The top-level design defines only the pin naming convention and port connection.

Figure 8: Qsys Top-Level Block Diagram

Top-Level Design File

Nios II 
Processor

JTAG 
UART

Fractional 
PLL

On-Chip 
Memory

ALTERA_PLL_RECONFIG 
IP Core

reset
global_reset

reset

inclk

Fractional PLL Locked Signal

Fractional PLL Output Clocks

To create a top-level design for your Qsys system with a .bdf schematic, follow these steps:

1. In the Intel Quartus Prime software, on the File menu, click New.
2. Select the Block Diagram/Schematic file and click OK.

A blank .bdf, Block1.bdf, opens.
3. On the File menu, click Save as. In the Save As dialog box, click Save.

The Intel Quartus Prime software sets the .bdf file name to your project name automatically.
4. Right-click in the blank.bdf, point to Insert and click Symbol to open the Symbol dialog box.
5. Expand Project, under Libraries select system, click OK.
6. Add system.qip to the project.
7. Connect the reconfig_to_pll[63:0] bus on the Altera PLL Reconfig instance to the

reconfig_to_pll[63:0] bus on the Altera PLL instance.
8. Connect the reconfig_from_pll[63:0] bus on the Altera PLL instance to the

reconfig_from_pll[63:0] bus on the Altera PLL Reconfig instance.
9. Position the Qsys system component and click Generate pins for Symbol Ports to automatically add

pins and nets to the schematic symbol.
10.Rename the existing pins to the modified pin names as follows:

AN-661
2019.10.14 Creating the Top-Level Design File 23

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Existing Pin Name Modified Pin Name

clk_clk inclk

reset_reset_n reset_n

pll_0_reset_reset areset

pll_0_locked_export locked

pll_0_outclk0_clk co_ouput

pll_0_outclk1_clk c1_ouptut

pll_0_outclk10_clk c10_ouptut

pll_0_outclk5_clk c5_output

11.Connect the pll_refclk_clk port to the inclk pin.
12.On the File menu, click Save.
13.On the Project menu, click Set as Top-Level Entity.
14.Assign the I/O standard and pin locations for all pins in your design.
15.Add the timing constraint to the .sdc file to constrain the input clock of your design.
16.Compile your design.

Incorporating the Nios II SBT for Eclipse
You can add a test code to your project Nios II SBT for Eclipse and use this program to run some simple
fractional PLL reconfiguration tests.

Adding Test Code to the Nios II SBT for Eclipse

To add a test code to the Nios II SBT for Eclipse, follow these steps:

1. Launch the Nios II SBT for Eclipse.
2. On the File menu, point to Switch Workspace, click Other, and select your project directory.
3. On the File menu, point to New and click Project.
4. Select Nios II Application and BSP from Template and click Next.
5. In the Select Project Template list, click Blank Project, and then locate the SOPC Information File

(.sopcinfo).
6. Type pll_reconfig as project name under the Application project.
7. Click Next and click Finish.
8. In Window Explorer, drag PLL_RECONFIG.c to the pll_reconfig directory.

24 Incorporating the Nios II SBT for Eclipse
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Setting Up the Nios II Project Settings

To set up the Nios II project settings, follow these steps:

1. In the Project Explorer tab, right click <project_name> and select Nios II, and click BSP Editor to
launch the Nios II BSP Editor.

2. To optimize the footprint size of the library project, in the Main tab, point to Settings and turn on
enabled_reduced_device_drivers.

3. To reduce the memory size allocated for the system library, for Max file descriptors, type 4.
4. In the Linker Script tab, select onchip_memory2_0 and the linker region name

for .bss, .heap, .rodata, .rwdata, .stack, and .text.
5. Click Generate.

Verifying Design on Hardware
To verify your design on hardware, you must compile your project, download the object file, and then
verify your design with the Nios II SBT for Eclipse.

Compiling the Project

To compile your project, follow these steps:

1. Add SignalTap II Logic Analyzer to your design. The SignalTap II Logic Analyzer shows read and write
activity in the system.

2. After adding signals to the SignalTap II Logic Analyzer, you can recompile your design. To recompile
your design, on the Processing menu, click Start Compilation.

3. After compilation, ensure that the TimeQuest timing analysis passes successfully.
4. Connect your hardware to your computer.

Downloading the Object File

To download the object file, perform these steps:

1. On the Tools menu, click Signal Tap II Logic Analyzer. The SignalTap II dialog box appears.
The SOF Manager contains the <your_project_name>.sof.

2. Click … to open the Select Program Files dialog box.
3. Select <your_project_name>.sof.
4. Click Open.
5. To download the file, click Program Device.

Figure 9: Install the SRAM Object File in the SignalTap II Dialog Box

AN-661
2019.10.14 Setting Up the Nios II Project Settings 25

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Verifying Design with the Nios II SBT for Eclipse

To verify your design with the Nios II SBT for Eclipse, perform these steps:

1. Right-click on <project>, point to Run As, and click Nios II Hardware for the Nios II C/C++ Eclipse to
compile the example test program.

2. Type in your selection to test your system.

Document Revision History for AN 661: Implementing Fractional PLL
Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Document
Version

Changes

2019.10.14 Added a note to the VCO Post Divide Counter Setting register in the Fractional PLL Dynamic
Reconfiguration Registers and Settings table.

2019.04.03 • Changed from "VCO DIV Setting" to "VCO Post Divide Counter Setting", and updated the
corresponding counter bit setting in the Fractional PLL Dynamic Reconfiguration Registers
and Settings table.

• Changed instances of Quartus II to Quartus Prime.

2018.11.29 Fixed broken links for design examples and corrected design files filename.

Date Version Changes

May 2016 2016.05.02 • Updated the description for mgmt_reset signal in Avalon-MM
Signals in Altera PLL Reconfig IP Core table.

• Updated MFRAC equation for M Counter Fractional Value (K) in
Fractional PLL Dynamic Reconfiguration Registers and Settings
table.

• Updated MFRAC and C0 counter values in Waveform Example for
Dynamic Reconfiguration with Avalon-MM Interface section.

• Updated design considerations on resynchronizing the fractional
PLL using the areset signal.

May 2015 2015.05.04 • Restructured the document.
• Added a note on logical counter and physical counter in the

Dynamic Phase Shift Signals in Altera PLL IP Core section.
• Added instructions to stitch two .mif files generated by Quartus II

software with a .tcl script.
• Added Design Example 5: .mif Streaming Reconfiguration.

August 2014 3.1 • Changed C_counter[18:22] to C_counter[22:18] in Table 2 on
page 4.

26 Verifying Design with the Nios II SBT for Eclipse
AN-661

2019.10.14

Altera Corporation Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Date Version Changes

November 2013 3.0 • Added a note to Table 2 on page 4 to clarify that the bypass enable
bit, even division bit, and odd division bit of the M, N, C counters
support write operation only.

• Updated Table 2 on page 4 to include VCO DIV setting informa‐
tion.

• Added “MIF Streaming” on page 12.
• Changed ALTERA_PLL to Altera PLL as per the naming in the

GUI.
• Changed ALTERA_PLL_RECONFIG to Altera PLL Reconfig as per

the naming in the GUI.
• Added a caution note to “Design Example 4” on page 20 to notify

users that the design example is only supported by the Quartus II
software version 13.1 onwards, due to IP upgrade from physical
counter to logical counter.

• Updated “MIF File Format” on page 13 to inform users that they
can also construct their own .mif files.

• Updated Table 2 on page 4 to include MIF Base Address informa‐
tion.

• Updated Figure 3 on page 9.
• Updated mgmt_waitrequest information in Table 1 on page 3.
• Removed Figure 4 on page 11, Figure 5 on page 12, Figure 6 on

page 13, Figure 7 on page 14, Figure 8 on page 15, Figure 9 on page
16, and Figure 10 on page 17.

• Updated “Performing Dynamic Phase Shifting with the Altera PLL
IP Core” on page 9 section due to IP upgrade from physical counter
to logical counter.

October 2012 2.0 • Updated “Fractional PLL Reconfiguration in 28-nm Devices” on
page 1.

• Updated Table 1 on page 3, Table 2 on page 4.
• Added Table 3 on page 6 and Table 10 on page 19.
• Added Figure 4 on page 11, Figure 5 on page 12, Figure 6 on page

13, Figure 7 on page 14, Figure 8 on page 15, Figure 9 on page 16,
Figure 10 on page 17.

• Added information about performing dynamic phase shifting using
the ALTERA_PLL IP core in “Performing Dynamic Phase Shifting
with the Altera PLL IP core” on page 9

• Added new design example and added “Design Example 4” on page
21 for reference.

May 2012 1.1 Updated “Design Considerations” on page 18.

February 2012 1.0 Initial release.

AN-661
2019.10.14 Document Revision History for AN 661: Implementing Fractional PLL

Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores
27

Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Implementing%20Fractional%20PLL%20Reconfiguration%20with%20Altera%20PLL%20and%20Altera%20PLL%20Reconfig%20IP%20Cores%20(AN-661%202019.10.14)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores
	Fractional PLL Reconfiguration in 28-nm Devices
	Implementing Fractional PLL Reconfiguration on 28-nm Devices Using the Intel Quartus Prime Software
	Connectivity between Altera PLL and Altera PLL Reconfig IP Cores
	Connecting Altera PLL and Altera PLL Reconfig IP Cores
	Avalon-MM Signals in Altera PLL Reconfig IP Core
	Registers and Counters Settings
	Fractional PLL Dynamic Reconfiguration Registers and Settings
	Counter Address and Bit Setting During Read Operation
	Dynamic Phase Shift Counter and cnt_select (Dynamic_Phase_Shift[20:16]) Bit Setting

	Reconfiguring Fractional PLL Settings with Avalon-MM Interface
	Waveform Example for Dynamic Reconfiguration with Avalon-MM Interface

	.mif Streaming Reconfiguration
	Stitching Two .mif Files Generated by the Intel Quartus Prime Software
	.mif Streaming Reconfiguration with Altera PLL Reconfig IP Core
	.mif File Format
	.mif Streaming Reconfiguration Operation Codes



	Fractional PLL Dynamic Phase Shifting in the Intel Quartus Prime Software
	Performing Dynamic Phase Shifting with Altera PLL IP Core
	Waveform Example for Dynamic Phase Shift with Altera PLL IP Core
	Dynamic Phase Shift Signals in Altera PLL IP Core
	Logical Counter Bit Setting

	Performing Dynamic Phase Shifting with Altera PLL Reconfig IP Core
	Waveform Example for Dynamic Phase Shift with Altera PLL Reconfig IP Core


	Design Considerations
	Using the Design Examples
	Software Requirement
	Design Example 1: PLL Reconfiguration with Altera PLL Reconfig IP Core to Reconfigure M, N, and C Counters
	Design Example 2: PLL Reconfiguration with Altera PLL Reconfig IP Core to Perform Dynamic Phase Shift
	Design Example 3: PLL Reconfiguration with Altera PLL Reconfig IP Core using Qsys Design Flow
	Qsys System and Components
	Main Menu Commands in Qsys
	Submenu Commands in Qsys

	Design Example 4: Dynamic Phase Shift with Altera PLL IP Core
	Design Example 5: .mif Streaming Reconfiguration

	Tutorial Walkthrough
	Creating a New Intel Quartus Prime Project
	Creating the Qsys System
	Creating the Top-Level Design File
	Incorporating the Nios II SBT for Eclipse
	Adding Test Code to the Nios II SBT for Eclipse
	Setting Up the Nios II Project Settings

	Verifying Design on Hardware
	Compiling the Project
	Downloading the Object File
	Verifying Design with the Nios II SBT for Eclipse


	Document Revision History for AN 661: Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores


