
Introduction
This paper presents a rigorous methodology for evaluating and benchmarking the
core performance of the Intel® Arria® 10 FPGA programmable logic product family,
with the goal of transparently presenting the methods and data such that any
interested party can reproduce and analyze the results.† To this end, ten publicly-
available designs from OpenCores representing a variety of functions were
implemented in a device from the Intel Arria 10 FPGA family and a device from the
closest competitor: the Xilinx* UltraScale* family. The benchmark results show that
Intel Arria 10 FPGAs deliver up to 20% higher performance than Xilinx UltraScale
devices, as measured by the maximum clock frequencies achieved in the example
designs across a range of device utilization.†

Background: evaluating the performance of Intel FPGA and
SoC products
The programmable logic industry does not have a standard benchmarking
methodology. Therefore, Intel employs rigorous internal analysis using a broad
combination of customer and internally-generated designs to understand and
quantify the performance of its programmable logic products relative to prior-
generation Intel products and competing products. The designs are collected from
a variety of market segments, such as high-performance computing, image and
video processing, wired and wireless communications, and consumer products.
Additionally, the designs use a variety of implementation technologies including
ASICs and FPGAs from other vendors. By using a broad suite of designs, Intel
ensures that the results are accurate and representative of the complex interaction
of customer designs and FPGA design tools such as the Intel® Quartus® Prime
Software Suite. To use customer designs, Intel invests significant resources in
converting designs to work with various synthesis tools and electronic design
automation (EDA) vendors. Intel also ensures that functionality is preserved and
appropriate code optimizations for the specific FPGA vendor are made (which is
necessary because designs are often developed such that they are optimized for a
specific FPGA).

For performance comparisons, Intel employs at least two comparison types:
timing-constrained, and best effort. The effort level is a reflection of both the
user's effort (how much work the user must do) and the tool's effort (how much
total compile time is required) to obtain the results. The purpose of the timing-
constrained comparison is to use default EDA tool settings, but ensure that the EDA
tool is optimizing for performance. The purpose of the best effort comparison is to
give an indication of the best possible result achievable. The experiments for this
kind of comparison require longer individual compilation times than in a default
push-button compile, and more than one compile per design.

Intel Arria 10 FPGAs deliver more than a speed grade faster core performance
and up to a 20% fMAX advantage for publicly available OpenCore designs.†

Authors
Martin S. Won

Senior Member of Technical Staff
Intel Programmable Solutions Group

Madhu Monga
Applications Engineer

Intel Programmable Solutions Group

Intel® Arria® 10 FPGA Performance
Benchmarking Methodology and Results

FPGA

Table of Contents

Introduction . 1

Background: evaluating the
 performance of Intel FPGA and
 SoC products 1

Increasing transparency via
 OpenCore-based performance
 comparisons 2

Target device families for
 performance comparison 2

OpenCore designs used in the
 analysis . 2

OpenCores stamping methodology 2

OpenCore stamping and
 benchmarking methodology . . . 2

Software tools, settings, and
 constraints . 4

Individual OpenCore design
 compilation results 5

Conclusion . 8

References . 8

Where to get more information . . . 8

white paper

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

Using this methodology, Intel has determined that Intel
Arria 10 FPGAs and SoCs deliver a core performance
advantage over competitive 20 nm FPGA products, as
measured by the maximum fMAX achievable for the speed-
critical clock paths in each of the designs in the design suite.
This performance advantage ranges from around 10% -
20% depending on the design, which equates roughly to an
advantage of one or two speed grades, where speed grades
are typically defined as a performance difference of 10%
- 15%.† These results help validate the position of the Intel
Arria 10 FPGAs as the highest performance 20 nm FPGA
family. However, because these results were obtained using
customer and Intel proprietary designs, Intel can share only
limited details of the analysis, which ultimately limits the
usefulness of this information to programmable logic users.

Increasing transparency via OpenCore-based
performance comparisons
To address this challenge to understanding programmable
logic performance, Intel has undertaken a benchmarking
effort using publicly-available designs from OpenCores
(www.opencores.org), an organization that offers open-
source hardware intellectual property (IP)cores. The goal
of this benchmarking effort is to help programmable logic
users:

• Understand the exact designs used in the performance
evaluation, including the specific details of those designs
down to the register transfer level (RTL) description

• Reproduce the results of the analysis themselves

• Scrutinize the results of the analysis to better understand
the applicability of the Intel Arria 10 FPGA performance
advantage to their specific design

The scope of this OpenCores-based performance analysis
is narrower than the internal analysis that Intel employs
because it focuses specifically on timing-constrained
compilations. This analysis is not a comprehensive treatment
of the topic, but the results and conclusions provide insight
into the relative performance of Intel Arria 10 FPGAs
compared to competitive devices when implementing similar
designs or designs that are composed of functions similar to
the ones used in the design example suite.

Target device families for performance
comparison
Intel chose its Intel Arria 10 FPGA family and the Xilinx
UltraScale family for the performance analysis. These
products are both built on a 20 nm TSMC process. Intel chose
the largest, comparably-sized devices using the fastest speed
grades available:

• Intel Arria 10 Device: 10AX115U1F45E1SG

• Xilinx UltraScale Device: XCKU115FLVF19243E

Note: Smaller devices within the families obtain similar
performance results. According to Intel internal tests, Kintex*
UltraScale and Virtex* UltraScale devices of the same speed
grade exhibit similar performance levels, therefore, the
fastest speed grade device from either family can represent
the entire UltraScale offering.

OpenCore designs used in the analysis
Intel selected OpenCores based on design size and
complexity, with the intent of representing a wide variety of
function types that use a mix of different device resource
types (i.e., logic, RAM, and DSP). Table 1 lists the OpenCore
designs used in the performance comparison and links to the
www.opencores.org web page for each design where users
can learn more about the design and download it. The table
also shows the average amount of logic utilized by each of
the OpenCore designs, measured using:

• Adaptive logic modules (ALMs) for Intel Arria 10 FPGAs

• Configurable logic block look-up tables (CLB LUTs) for
UltraScale FPGAs

Note: ALMs and CLB LUTs have architectural differences
(ALMs use look-up tables with eight inputs and CLBs use
look-up tables with six inputs), therefore, the devices are
expected to have different utilization numbers for a given
design.

OpenCores stamping methodology
The OpenCores designs use only a small fraction of the
resources in the target devices. Utilizing only a small
fraction of the total device resources is not a common
practice or desired goal among programmable logic users.
Also, increasing utilization often has a negative impact on
the highest achievable fMAX as device resources become
exhausted and the design becomes harder to place and
route. To simulate the impact of device utilization on
programmable logic performance, Intel performed a large
number of compilations, each one incrementally adding one
OpenCore instance compared to the prior compilation. To
increase the design size in the programmable logic device,
each OpenCore design was instantiated repeatedly (multiple
stamps of the same core) in the FPGA such that:

• Each stamp was implemented in parallel

• An I/O wrapper logic was added to reduce the number of
I/O pins required for the larger design

• No timing critical paths between the cores and the wrapper
logic existed

• The wrapper logic provided as little overhead as possible

Figure 1 illustrates the stamping process.

OpenCore stamping and benchmarking
methodology
As the number of instantiations of the OpenCore design
increases (and thus design size increases), resources such as
I/O pins and global clocks become limited. To avoid running
out of pins, each OpenCore was wrapped in a shift register,
such that one physical pin would feed all input pins of a core
and all output pins of a core would feed into a loadable shift
register. Figures 2 and 3 show the input and output shift
registers, respectively. The shift register size is dependent on
the number of I/O pins, and the number of shift registers is
dependent on the number of OpenCores implemented in the
FPGA.

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

Figure 1. oc_aquarius Design Instantiated Four Times in the FPGA

OpenCore Design
Name Design Function Web Page

Device Utilization
(Single Instance)

Intel Arria 10
FPGA ALMs Used

UltraScale CLB
LUTs Used

1 oc_avr_hp_cm4 AVR Processor https://opencores.org/project,avr_hp 1,269 1,706

2 oc_warp_tmu Image Processing https://opencores.org/project,warp 2,100 2,417

3 oc_reed_
solomon_decoder

Error Correction
Code

https://opencores.org/project,reed_
solomon_decoder

2,208 3,299

4 oc_usbhostslave USB 1.1 Controller http://opencores.org/
project,usbhostslave

1,228 1,701

5 oc_dma_axi64 Single-channel 64
bit AXI* Master DMA

https://opencores.org/project,dma_axi 1,817 2,582

6 oc_256_aes Advanced Encryption
Standard (AES)

Note 1 1,101 2,220

7 oc_m1_core 32 bit RISC Processor http://opencores.org/project,m1_
core,overview

1,797 2,617

8 oc_aquarius RISC SuperH
Processor

https://opencores.org/project,aquarius 2,703 3,457

9 oc_des_des3perf Triple Data
Encryption Standard
(DES)

https://opencores.org/project,des 3,574 5,618

10 oc_fpu100 32 bit Floating Point
Unit

https://opencores.org/project,fpu100 1,827 2,700

Table 1. Ten OpenCore Designs Used in the Performance Comparison
1 The oc_256_aes design was available from OpenCores when the performance comparison project was started, however, it is now unavailable. The design is still available under its
open source license from Intel at the links included at the end of this paper.

Input Wrapper Logic OpenCore Blocks
in Parallel

Output Wrapper Logic

Reducer

Reducer

Reducer

Reducer

reset
core_clk

din

wrapper_clk
dout

LFSR Top
Reducer

Top
oc_aquarius

oc_aquarius

oc_aquarius

oc_aquarius

LFSR

LFSR

LFSR

LFSR

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

To avoid running out of global clock resources, a pin directly
fed the global clock and reset signals for all OpenCores. For
example, if a core required two clocks (core clock 1 and core
clock 2) and one reset signal, all instances of core clock 1
were fed by one pin, all instances of core clock 2 were fed by
a different pin, and all instances of the reset signal were fed
by a third pin. With this method, all OpenCores were fed by
the same clock and reset signals (see Figure 4).

Once the wrapper logic tied up all of the OpenCores in the
FPGA, Intel ensured that no critical paths existed between
the wrapper logic (shift registers) and the OpenCore. To
achieve this goal, false paths were created and, by making the
core clock(s) and wrapper logic clock on different unrelated
clock domains, no timing paths existed. The design tools
could then optimize the cores separately from the shift
registers. Intel instantiated the OpenCores as many times as
the device and design tools would allow without compilation
errors.

Software tools, settings, and constraints
To perform this study, Intel used the latest version of the
required FPGA development tools that were available at the
time of the analysis:

• Intel Quartus Prime Software Suite version 16.1 B189

• Xilinx Vivado* software version 2016.3

Both tools were installed and operated on Linux64 machines.

These programmable logic tools offer settings that provide
a trade-off among design performance, logic resource
consumption, compile time, and memory usage. The settings
that produce the best results for one design are likely not
the best for another. Additionally, user constraints that guide
the EDA tool can improve the results. Even with a design set
that is representative of customer designs, the benchmarking
outcome varies significantly with software settings and
applied constraints. For the performance comparisons
presented in this paper, Intel used the default EDA settings,
but set aggressive timing constraints. To determine
aggressive timing constraints for each design, Intel applied
a frequency (fMAX) constraint to each OpenCore design clock
such that the constraint is just beyond what is achievable
for each clock. Intel determined a base constraint value by
increasing the constraint until it could not be met. Then, Intel
determined the aggressive constraint by multiplying the
base constraint value by a factor of at least 1.3. The following
sections describe the constraints applied to each design.

Figure 2. Input Shift Register Implementation

Core

Shift Register Clock

core_datain

core_input[3]core_input[0]

Core

Shift Register Clock

core_dataout

core_input[3]core_input[0]

Shift Register Load

0

Figure 3. Output Shift Register Implementation

Core 0

Co
re

 0
 S

hi
ft

 R
eg

is
te

r

Co
re

 0
 S

hi
ft

 R
eg

is
te

r

core0_datain core0_dataout

Core 1

Co
re

 1
 S

hi
ft

 R
eg

is
te

r

Co
re

 1
 S

hi
ft

 R
eg

is
te

r

core1_datain core1_dataout

Shift Register Clock
Core Clock 1
Core Clock 2

Core Reset
Shift Register Load

Figure 4. Two-core implementation with shared clock and
reset signals

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

Individual OpenCore design compilation
results
This section provides the detailed compilation results for
each OpenCore design. In each case, a graph is provided of
the fMAX achieved for each design compilation.

• The vertical axis measures the fMAX of the compilations

• The horizontal axis measures the device utilization, as
measured by logic utilization (Intel Arria 10 FPGA ALMs and
Ultrascale CLBs)

• Blue dots show the fMAX values for Intel Arria 10 FPGA
compilations

• Red dots show the fMAX values for UltraScale compilations

• The geometric mean value of each set of data points is
also shown (blue line for Intel Arria 10 FPGA, red line for
UltraScale), providing a numerical value for the overall
trend of the data points

The data points at the leftmost edge are for the compilations
corresponding to device utilization starting at 40%,as
measured by logic usage. The analysis uses 40% because
most programmable logic users seek to utilize around half
or more of their device resources, or select a smaller device
to achieve lower cost. Also, as indicated in most of the
graphs, the fMAX values are quite stable for the majority of
the device utilization and only tends to fall off when one of
the resources (logic, memory, DSP, routing, etc.) becomes
limited. The last data point for each set (the last successful
compilation) is not shown or included in the calculation of the
geometric mean. This value is not considered in the analysis
because the last data point usually represents a compilation
that has completely exhausted one of the device resources
and indicates a design situation that would be considered
unusable or unacceptable by many users.

OC_AVR_HP_CM4 core
This graph shows the fMAX results for the compilations of the
OC_AVR, an AVR processor core. The Intel Arria 10 FPGA
fMAX values fall off a little starting at around 90% utilization,
producing a geometric mean fMAX of 320 MHz. The Intel
Arria 10 FPGA compilations fail at about 97% logic utilization,
due to routing congestion. The UltraScale fMAX values also
fall off at about 90% utilization, producing a geometric mean
fMAX of 267 MHz. The last compilation is at about 97% logic
utilization, and stops afterwards due SSI partitioning failure.

OC_Warp_TMU core
This graph shows the fMAX results for the OC_Warp_TMU
image processing design compilations. The Intel Arria 10
FPGA fMAX values are stable at about 250 MHz, and only fall
off slightly after 90% logic utilization, producing a geometric
mean fMAX of 248 MHz. The Intel Arria 10 FPGA compilations
are successful until about 97% utilization, and fail afterwards
due to routing congestion. The UltraScale fMAX values begin
to fall off at about 75% device utilization, and the design
ceases to compile successfully at about 87% utilization due
to routing congestion, producing a geometric mean fMAX of
225 MHz.

OC_Reed-Solomon-Decoder core
This graph shows the fMAX results for the compilations of the
OC_Reed-Solomon_Decoder, a function commonly used for
error correction. The Intel Arria 10 FPGA fMAX values are quite

f M
AX

 (M
H

z)

Design: oc_avr_hp_cm4
Constraint: 443 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

f M
AX

 (M
H

z)

Design: oc_warp_tmu
Constraint: 466 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 5. OC_AVR_HP_CM4 Results

Figure 6. OC_Warp_TMU Results

f M
AX

 (M
H

z)

Design: oc_read_solomon_decoder
Constraint: 611 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 7. Reed-Solomon Decoder Results

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

stable at about 330 MHz, and falls off starting at roughly
90% logic utilization due to exhausting the M20K memory
resources, producing a geometric mean fMAX of 325 MHz. The
fMAX fall off occurs due to exhaustion of the M20K memory
resources, and is expected due to the Intel Quartus Prime
Software Suite default compilation settings, which do not
enable MLAB memory resources to be inferred. In this mode,
the M20K resources are used for all memory needs, even
when MLAB resources might suffice, and the M20K resources
are completely exhausted at about 94% logic utilization. The
UltraScale fMAX values are stable at about 340 MHz, producing
a geometric mean fMAX of 335 MHz. The last successful
compilations are at about 96% utilization, and fail afterwards
due to insufficient logic.

OC_USBHostSlave core
This graph shows the fMAX results for the compilations of the
OC_USBHostSlave, a USB 1.1 controller. The Intel Arria 10
FPGA fMAX values are quite stable and produce a geometric
mean fMAX of 480 MHz. The Intel Arria 10 FPGA compilations
fail at about 78% logic utilization, again due to exhausting
the M20K resources, similar to the Reed-Solomon case. The
UltraScale fMAX values are stable at about 425 MHz, producing
a geometric mean fMAX of 425 MHz. The last compilation is at
about 96% logic utilization, and stops afterwards due to SSI
partitioning failure.

OC_DMA_AXI64 core
This graph shows the fMAX results for the compilations of
the OC_DMA_AXI64, a single-channel 64 bit AXI master
direct-memory access function. The Intel Arria 10 FPGA
fMAX values are quite stable start to fall off a little at 90%+
utilization, producing a geometric mean fMAX of 331 MHz.
The Intel Arria 10 FPGA compilations fail at nearly 100%
logic utilization, due to routing congestion. The UltraScale
fMAX values are also quite stable and only fall off at 90%+
utilization, producing a geometric mean fMAX of 283 MHz. The
last compilation is at about 95% logic utilization, and stops
afterwards due to SSI partitioning failure.

OC_256_AES core
This graph shows the fMAX results for the compilations of
the OC_256_AES, a 256 bit Advanced Encryption Standard
(AES) function. The Intel Arria 10 FPGA fMAX values fall off a
little starting at 70% utilization, producing a geometric mean
fMAX of 242 MHz. The Intel Arria 10 FPGA compilations fail at
nearly 100% logic utilization, due to routing congestion. The
UltraScale fMAX values are quite stable, producing a geometric
mean fMAX of 209 MHz. The last compilation is at nearly 100%
logic utilization, and stops afterwards due insufficient LUTs.

OC_M1 core
This graph shows the fMAX results for the compilations of
OC_M1, a 32 bit processor core. The Intel Arria 10 FPGA fMAX
values are quite stable and begin to fall off a little starting at
around 90% utilization, producing a geometric mean fMAX of
277 MHz. The Intel Arria 10 FPGA compilations fail at about
99% logic utilization, due to insufficient LAB resources. The
UltraScale fMAX values also fall off at about 90% utilization,
producing a geometric mean fMAX of 258 MHz. The last
compilation is at about 98% logic utilization, and stops
afterwards due to insufficient CLBs.

f M
AX

 (M
H

z)

Design: oc_usbhostslave
Constraint: 684 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 8. USB Host Slave Results

f M
AX

 (M
H

z)

Design: oc_dma_axi64
Constraint: 558 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 9. DMA AXI64 Results

f M
AX

 (M
H

z)

Design: oc_256_aes
Constraint: 379 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 10. 256 AES Results

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

OC_Aquarius core
This graph shows the fMAX results for the compilations of
OC_Aquarius, a RISC SuperH processor core. The Intel
Arria 10 FPGA fMAX values fall off at over 50%, producing a
geometric mean fMAX of 103 MHz. The Intel Arria 10 FPGA
compilations fall off due to the default compiler settings
exhausting the M20K resources, similar to the Reed-Solomon
case, and all of the M20K resources are exhausted at the last
indicated compile, which is at about 70% logic utilization. The
UltraScale fMAX values fall off slightly, producing a geometric
mean fMAX of 106 MHz. The last compilation is at about 99%
logic utilization, and stops afterwards due to insufficient
CLBs.

OC_DES_DES3Perf core
This graph shows the fMAX results for the compilations of the
OC_DES_DES3Perf, a Triple Data Encryption Standard (DES)
function. The Intel Arria 10 FPGA fMAX values are stable and
start to fall off at 80%+ utilization, producing a geometric
mean fMAX of 528 MHz. The Intel Arria 10 FPGA compilations
fail at about 98% logic utilization, due to routing congestion.
The UltraScale fMAX values are quite stable and only fall off
a little at 90%+ utilization, producing a geometric mean
fMAX of 492 MHz. The last compilation is at about 98% logic
utilization, and stops afterwards due to insufficient CLBs.

OC_FPU100 core
This graph shows the fMAX results for the compilations of
the OC_FPU100, a floating point unit function. The Intel
Arria 10 FPGA fMAX values are stable and start to fall off a
little at 92%+ utilization, producing a geometric mean fMAX of
254 MHz. The Intel Arria 10 FPGA compilations fail at nearly
100% logic utilization, due to insufficient LAB resources. The
UltraScale fMAX values are quite stable, producing a geometric
mean fMAX of 232 MHz. The last compilation is at about 94%
logic utilization, and stops afterwards due to SSI partitioning
failure.

f M
AX

 (M
H

z)

Design: oc_m1_core
Constraint: 465 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

f M
AX

 (M
H

z)

Design: oc_aquarius
Constraint: 139 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 11. M1 (32 bit Processor) Results

Figure 12. Aquarius Results

f M
AX

 (M
H

z)

Design: oc_des_des3perf
Constraint: 700 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

f M
AX

 (M
H

z)

Design: oc_fpu100
Constraint: 380 MHz

% Device Utilization

Intel® Arria® 10 FPGA fMAX

UltraScale* fMAX

UltraScale fMAX Geometric Mean
Intel Arria 10 FPGA fMAX Geometric Mean

Figure 13. DES DES3Perf Results Figure 14. FPU100 Results

White Paper | Intel Arria 10 FPGA Performance Benchmarking Methodology and Results

Conclusion
Table 2 summarizes the fMAX values reported for each of the
OpenCore comparisons, and the relative performance of the
Intel Arria 10 FPGA family relative to the UltraScale family.

Across the ten benchmark designs, eight out of ten achieve
higher fMAX values in the Intel Arria 10 FPGA family, in the
range of 7% - 20%. As measured by device speed grades,
which are typically defined as a difference of 10% - 15%,
this performance advantage represents one to two speed
grades.† Two of the benchmark designs achieve slightly
higher performance (3%) in the competing family. In these
two designs, the amount of M20K memory blocks in the
Intel Arria 10 FPGA was exhausted ahead of the logic
resources as device utilization increased, which negatively
impacted fMAX. As a result of using default compilation
settings, the M20K memory blocks were used exclusively
for the memory resources required by the design. Under
different compilation settings allowing use of the MLAB
memory resources, it is likely that the reported fMAX for the
Intel Arria 10 FPGA compilations would have improved.
Future versions of the Intel Quartus Prime Software Suite
may operate with different default compilation settings if it
is determined that they will improve fMAX performance while
maintaining other compilation performance metrics.

Intel provides this data and the designs upon which the
analysis is based with the intent of increasing transparency
and understanding among programmable logic users of

the performance capabilities of Intel Arria 10 FPGAs. Intel
Arria 10 FPGAs and SoCs were designed to be the highest
performance products in their class, and the comparisons
described in this analysis using publicly-available designs
help to underscore and reinforce their position as the
programmable logic industry’s highest-performance 20 nm
FPGAs and SoCs, as measured by OpenCores designs.

References
1 http://www.opencores.org
2 http://www.altera.com/arriaperformance

Where to get more information
For more information about Intel and Intel Arria 10 FPGAs,
visit https://www.altera.com/products/fpga/arria-series/
arria-10/overview.html

For more information about Intel and Intel Stratix 10 FPGAs,
visit https://www.altera.com/products/fpga/stratix-series/
stratix-10/overview.html

For more information about the the high-performance
architecture of Intel Arria 10 devices, consult the paper:
https://www.altera.com/content/dam/altera-www/global/
en_US/pdfs/literature/wp/wp-01200-power-performance-
zettabyte-generation-10.pdf

To download the design files for each of the benchmarks,
visit http://www.altera.com/arriaperformance

OpenCore
Design Name Design Function

Intel Arria 10
FPGA fMAX
(geomean)

UltraScale fMAX
(geomean)

Intel Arria 10
FPGA fMAX/
UltraScale fMAX

1 oc_avr_hp_cm4 AVR Processor 320 MHz 267 MHz +20%

2 oc_warp_tmu Image Processing 248 MHz 225 MHz +10%

3 oc_reed_solomon_
decoder

Error Correction Code 325 MHz 335 MHz -3%

4 oc_usbhostslave USB 1.1 Controller 480 MHz 424 MHz +13%

5 oc_dma_axi64 Single-channel 64-bit AXI Master DMA 331 MHz 283 MHz +17%

6 oc_256_aes Advanced Encryption Standard (AES) 242 MHz 209 MHz +16%

7 oc_m1_core 32-bit RISC Processor 277 MHz 258 MHz +7%

8 oc_aquarius RISC SuperH Processor 103 MHz 106 MHz -3%

9 oc_des_des3perf Triple DES (Data Encryption Standard) 528 MHz 492 MHz +7%

10 oc_fpu100 32-bit Floating Point Unit 254 MHz 232 MHz +10%

Table 2. OpenCore Results Summary

† Tests measure performance of components on a particular test, in specific systems.
Differences in hardware, software, or configuration will affect actual performance. Consult
other sources of information to evaluate performance as you consider your purchase. For
more complete information about performance and benchmark results, visit www.intel.
com/benchmarks.

© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Experience What’s Inside, Intel Atom, Intel Core, Intel Xeon, MAX, Nios,
Quartus, and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.
* Other marks and brands may be claimed as the property of others.
 Please Recycle WP-01271-1.0

