
Introduction
This paper presents a rigorous methodology for evaluating and benchmarking the 
core performance of the Intel® Arria® 10 FPGA programmable logic product family, 
with the goal of transparently presenting the methods and data such that any 
interested party can reproduce and analyze the results.† To this end, ten publicly-
available designs from OpenCores representing a variety of functions were 
implemented in a device from the Intel Arria 10 FPGA family and a device from the 
closest competitor: the Xilinx* UltraScale* family. The benchmark results show that 
Intel Arria 10 FPGAs deliver up to 20% higher performance than Xilinx UltraScale 
devices, as measured by the maximum clock frequencies achieved in the example 
designs across a range of device utilization.†

Background: evaluating the performance of Intel FPGA and 
SoC products 
The programmable logic industry does not have a standard benchmarking 
methodology. Therefore, Intel employs rigorous internal analysis using a broad 
combination of customer and internally-generated designs to understand and 
quantify the performance of its programmable logic products relative to prior-
generation Intel products and competing products. The designs are collected from 
a variety of market segments, such as high-performance computing, image and 
video processing, wired and wireless communications, and consumer products. 
Additionally, the designs use a variety of implementation technologies including 
ASICs and FPGAs from other vendors. By using a broad suite of designs, Intel 
ensures that the results are accurate and representative of the complex interaction 
of customer designs and FPGA design tools such as the Intel® Quartus® Prime 
Software Suite. To use customer designs, Intel invests significant resources in 
converting designs to work with various synthesis tools and electronic design 
automation (EDA) vendors. Intel also ensures that functionality is preserved and 
appropriate code optimizations for the specific FPGA vendor are made (which is 
necessary because designs are often developed such that they are optimized for a 
specific FPGA). 

For performance comparisons, Intel employs at least two comparison types: 
timing-constrained, and best effort. The effort level is a reflection of both the 
user's effort (how much work the user must do) and the tool's effort (how much 
total compile time is required) to obtain the results. The purpose of the timing-
constrained comparison is to use default EDA tool settings, but ensure that the EDA 
tool is optimizing for performance. The purpose of the best effort comparison is to 
give an indication of the best possible result achievable. The experiments for this 
kind of comparison require longer individual compilation times than in a default 
push-button compile, and more than one compile per design.

Intel Arria 10 FPGAs deliver more than a speed grade faster core performance 
and up to a 20% fMAX advantage for publicly available OpenCore designs.†
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Using this methodology, Intel has determined that Intel 
Arria 10 FPGAs and SoCs deliver a core performance 
advantage over competitive 20 nm FPGA products, as 
measured by the maximum fMAX achievable for the speed-
critical clock paths in each of the designs in the design suite. 
This performance advantage ranges from around 10% - 
20% depending on the design, which equates roughly to an 
advantage of one or two speed grades, where speed grades 
are typically defined as a performance difference of 10% 
- 15%.† These results help validate the position of the Intel 
Arria 10 FPGAs as the highest performance 20 nm FPGA 
family. However, because these results were obtained using 
customer and Intel proprietary designs, Intel can share only 
limited details of the analysis, which ultimately limits the 
usefulness of this information to programmable logic users.

Increasing transparency via OpenCore-based 
performance comparisons
To address this challenge to understanding programmable 
logic performance, Intel has undertaken a benchmarking 
effort using publicly-available designs from OpenCores 
(www.opencores.org), an organization that offers open-
source hardware intellectual property (IP)cores. The goal 
of this benchmarking effort is to help programmable logic 
users:

• Understand the exact designs used in the performance 
evaluation, including the specific details of those designs 
down to the register transfer level (RTL) description

• Reproduce the results of the analysis themselves

• Scrutinize the results of the analysis to better understand 
the applicability of the Intel Arria 10 FPGA performance 
advantage to their specific design

The scope of this OpenCores-based performance analysis 
is narrower than the internal analysis that Intel employs 
because it focuses specifically on timing-constrained 
compilations. This analysis is not a comprehensive treatment 
of the topic, but the results and conclusions provide insight 
into the relative performance of Intel Arria 10 FPGAs 
compared to competitive devices when implementing similar 
designs or designs that are composed of functions similar to 
the ones used in the design example suite.

Target device families for performance 
comparison
Intel chose its Intel Arria 10 FPGA family and the Xilinx 
UltraScale family for the performance analysis. These 
products are both built on a 20 nm TSMC process. Intel chose 
the largest, comparably-sized devices using the fastest speed 
grades available:

•  Intel Arria 10 Device: 10AX115U1F45E1SG

•  Xilinx UltraScale Device: XCKU115FLVF19243E

Note: Smaller devices within the families obtain similar 
performance results. According to Intel internal tests, Kintex* 
UltraScale and Virtex* UltraScale devices of the same speed 
grade exhibit similar performance levels, therefore, the 
fastest speed grade device from either family can represent 
the entire UltraScale offering.

OpenCore designs used in the analysis
Intel selected OpenCores based on design size and 
complexity, with the intent of representing a wide variety of 
function types that use a mix of different device resource 
types (i.e., logic, RAM, and DSP). Table 1 lists the OpenCore 
designs used in the performance comparison and links to the 
www.opencores.org web page for each design where users 
can learn more about the design and download it. The table 
also shows the average amount of logic utilized by each of 
the OpenCore designs, measured using: 

• Adaptive logic modules (ALMs) for Intel Arria 10 FPGAs 

• Configurable logic block look-up tables (CLB LUTs) for 
UltraScale FPGAs

Note: ALMs and CLB LUTs have architectural differences 
(ALMs use look-up tables with eight inputs and CLBs use 
look-up tables with six inputs), therefore, the devices are 
expected to have different utilization numbers for a given 
design.

OpenCores stamping methodology
The OpenCores designs use only a small fraction of the 
resources in the target devices. Utilizing only a small 
fraction of the total device resources is not a common 
practice or desired goal among programmable logic users. 
Also, increasing utilization often has a negative impact on 
the highest achievable fMAX as device resources become 
exhausted and the design becomes harder to place and 
route. To simulate the impact of device utilization on 
programmable logic performance, Intel performed a large 
number of compilations, each one incrementally adding one 
OpenCore instance compared to the prior compilation. To 
increase the design size in the programmable logic device, 
each OpenCore design was instantiated repeatedly (multiple 
stamps of the same core) in the FPGA such that:

• Each stamp was implemented in parallel

• An I/O wrapper logic was added to reduce the number of 
I/O pins required for the larger design

• No timing critical paths between the cores and the wrapper 
logic existed

• The wrapper logic provided as little overhead as possible

Figure 1 illustrates the stamping process.

OpenCore stamping and benchmarking 
methodology 
As the number of instantiations of the OpenCore design 
increases (and thus design size increases), resources such as 
I/O pins and global clocks become limited. To avoid running 
out of pins, each OpenCore was wrapped in a shift register, 
such that one physical pin would feed all input pins of a core 
and all output pins of a core would feed into a loadable shift 
register. Figures 2 and 3 show the input and output shift 
registers, respectively. The shift register size is dependent on 
the number of I/O pins, and the number of shift registers is 
dependent on the number of OpenCores implemented in the 
FPGA.
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Figure 1. oc_aquarius Design Instantiated Four Times in the FPGA

# OpenCore Design 
Name Design Function Web Page

Device Utilization  
(Single Instance)

Intel Arria 10 
FPGA ALMs Used

UltraScale CLB 
LUTs Used

1 oc_avr_hp_cm4 AVR Processor https://opencores.org/project,avr_hp 1,269 1,706

2 oc_warp_tmu Image Processing https://opencores.org/project,warp 2,100 2,417

3 oc_reed_
solomon_decoder

Error Correction 
Code

https://opencores.org/project,reed_
solomon_decoder

2,208 3,299

4 oc_usbhostslave USB 1.1 Controller http://opencores.org/
project,usbhostslave

1,228 1,701

5 oc_dma_axi64 Single-channel 64 
bit AXI* Master DMA 

https://opencores.org/project,dma_axi 1,817 2,582

6 oc_256_aes Advanced Encryption 
Standard (AES)

Note 1 1,101 2,220

7 oc_m1_core 32 bit RISC Processor http://opencores.org/project,m1_
core,overview

1,797 2,617

8 oc_aquarius RISC SuperH 
Processor

https://opencores.org/project,aquarius 2,703 3,457

9 oc_des_des3perf Triple Data 
Encryption Standard 
(DES)

https://opencores.org/project,des 3,574 5,618

10 oc_fpu100 32 bit Floating Point 
Unit

https://opencores.org/project,fpu100 1,827 2,700

Table 1. Ten OpenCore Designs Used in the Performance Comparison
1 The oc_256_aes design was available from OpenCores when the performance comparison project was started, however, it is now unavailable. The design is still available under its 
open source license from Intel at the links included at the end of this paper.
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To avoid running out of global clock resources, a pin directly 
fed the global clock and reset signals for all OpenCores. For 
example, if a core required two clocks (core clock 1 and core 
clock 2) and one reset signal, all instances of core clock 1 
were fed by one pin, all instances of core clock 2 were fed by 
a different pin, and all instances of the reset signal were fed 
by a third pin. With this method, all OpenCores were fed by 
the same clock and reset signals (see Figure 4).

Once the wrapper logic tied up all of the OpenCores in the 
FPGA, Intel ensured that no critical paths existed between 
the wrapper logic (shift registers) and the OpenCore. To 
achieve this goal, false paths were created and, by making the 
core clock(s) and wrapper logic clock on different unrelated 
clock domains, no timing paths existed. The design tools 
could then optimize the cores separately from the shift 
registers. Intel instantiated the OpenCores as many times as 
the device and design tools would allow without compilation 
errors.

Software tools, settings, and constraints
To perform this study, Intel used the latest version of the 
required FPGA development tools that were available at the 
time of the analysis: 

• Intel Quartus Prime Software Suite version 16.1 B189

• Xilinx Vivado* software version 2016.3

Both tools were installed and operated on Linux64 machines.

These programmable logic tools offer settings that provide 
a trade-off among design performance, logic resource 
consumption, compile time, and memory usage. The settings 
that produce the best results for one design are likely not 
the best for another. Additionally, user constraints that guide 
the EDA tool can improve the results. Even with a design set 
that is representative of customer designs, the benchmarking 
outcome varies significantly with software settings and 
applied constraints. For the performance comparisons 
presented in this paper, Intel used the default EDA settings, 
but set aggressive timing constraints. To determine 
aggressive timing constraints for each design, Intel applied 
a frequency (fMAX) constraint to each OpenCore design clock 
such that the constraint is just beyond what is achievable 
for each clock. Intel determined a base constraint value by 
increasing the constraint until it could not be met. Then, Intel 
determined the aggressive constraint by multiplying the 
base constraint value by a factor of at least 1.3. The following 
sections describe the constraints applied to each design.

Figure 2. Input Shift Register Implementation
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Figure 3. Output Shift Register Implementation
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Individual OpenCore design compilation 
results 
This section provides the detailed compilation results for 
each OpenCore design. In each case, a graph is provided of 
the fMAX achieved for each design compilation. 

• The vertical axis measures the fMAX of the compilations

• The horizontal axis measures the device utilization, as 
measured by logic utilization (Intel Arria 10 FPGA ALMs and 
Ultrascale CLBs)

• Blue dots show the fMAX values for Intel Arria 10 FPGA 
compilations

• Red dots show the fMAX values for UltraScale compilations

• The geometric mean value of each set of data points is 
also shown (blue line for Intel Arria 10 FPGA, red line for 
UltraScale), providing a numerical value for the overall 
trend of the data points

The data points at the leftmost edge are for the compilations 
corresponding to device utilization starting at 40%,as 
measured by logic usage. The analysis uses 40% because 
most programmable logic users seek to utilize around half 
or more of their device resources, or select a smaller device 
to achieve lower cost. Also, as indicated in most of the 
graphs, the fMAX values are quite stable for the majority of 
the device utilization and only tends to fall off when one of 
the resources (logic, memory, DSP, routing, etc.) becomes 
limited. The last data point for each set (the last successful 
compilation) is not shown or included in the calculation of the 
geometric mean. This value is not considered in the analysis 
because the last data point usually represents a compilation 
that has completely exhausted one of the device resources 
and indicates a design situation that would be considered 
unusable or unacceptable by many users.

OC_AVR_HP_CM4 core
This graph shows the fMAX results for the compilations of the 
OC_AVR, an AVR processor core. The Intel Arria 10 FPGA 
fMAX values fall off a little starting at around 90% utilization, 
producing a geometric mean fMAX of 320 MHz. The Intel 
Arria 10 FPGA compilations fail at about 97% logic utilization, 
due to routing congestion. The UltraScale fMAX values also 
fall off at about 90% utilization, producing a geometric mean 
fMAX of 267 MHz. The last compilation is at about 97% logic 
utilization, and stops afterwards due SSI partitioning failure.

OC_Warp_TMU core
This graph shows the fMAX results for the OC_Warp_TMU 
image processing design compilations. The Intel Arria 10 
FPGA fMAX values are stable at about 250 MHz, and only fall 
off slightly after 90% logic utilization, producing a geometric 
mean fMAX of 248 MHz. The Intel Arria 10 FPGA compilations 
are successful until about 97% utilization, and fail afterwards 
due to routing congestion. The UltraScale fMAX values begin 
to fall off at about 75% device utilization, and the design 
ceases to compile successfully at about 87% utilization due 
to routing congestion, producing a geometric mean fMAX of 
225 MHz.

OC_Reed-Solomon-Decoder core
This graph shows the fMAX results for the compilations of the 
OC_Reed-Solomon_Decoder, a function commonly used for 
error correction. The Intel Arria 10 FPGA fMAX values are quite 
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Figure 6. OC_Warp_TMU Results
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stable at about 330 MHz, and falls off starting at roughly 
90% logic utilization due to exhausting the M20K memory 
resources, producing a geometric mean fMAX of 325 MHz. The 
fMAX fall off occurs due to exhaustion of the M20K memory 
resources, and is expected due to the Intel Quartus Prime 
Software Suite default compilation settings, which do not 
enable MLAB memory resources to be inferred. In this mode, 
the M20K resources are used for all memory needs, even 
when MLAB resources might suffice, and the M20K resources 
are completely exhausted at about 94% logic utilization. The 
UltraScale fMAX values are stable at about 340 MHz, producing 
a geometric mean fMAX of 335 MHz. The last successful 
compilations are at about 96% utilization, and fail afterwards 
due to insufficient logic.

OC_USBHostSlave core
This graph shows the fMAX results for the compilations of the 
OC_USBHostSlave, a USB 1.1 controller. The Intel Arria 10 
FPGA fMAX values are quite stable and produce a geometric 
mean fMAX of 480 MHz. The Intel Arria 10 FPGA compilations 
fail at about 78% logic utilization, again due to exhausting 
the M20K resources, similar to the Reed-Solomon case. The 
UltraScale fMAX values are stable at about 425 MHz, producing 
a geometric mean fMAX of 425 MHz. The last compilation is at 
about 96% logic utilization, and stops afterwards due to SSI 
partitioning failure.

OC_DMA_AXI64 core
This graph shows the fMAX results for the compilations of 
the OC_DMA_AXI64, a single-channel 64 bit AXI master 
direct-memory access function. The Intel Arria 10 FPGA 
fMAX values are quite stable start to fall off a little at 90%+ 
utilization, producing a geometric mean fMAX of 331 MHz. 
The Intel Arria 10 FPGA compilations fail at nearly 100% 
logic utilization, due to routing congestion. The UltraScale 
fMAX values are also quite stable and only fall off at 90%+ 
utilization, producing a geometric mean fMAX of 283 MHz. The 
last compilation is at about 95% logic utilization, and stops 
afterwards due to SSI partitioning failure.

OC_256_AES core
This graph shows the fMAX results for the compilations of 
the OC_256_AES, a 256 bit Advanced Encryption Standard 
(AES) function. The Intel Arria 10 FPGA fMAX values fall off a 
little starting at 70% utilization, producing a geometric mean 
fMAX of 242 MHz. The Intel Arria 10 FPGA compilations fail at 
nearly 100% logic utilization, due to routing congestion. The 
UltraScale fMAX values are quite stable, producing a geometric 
mean fMAX of 209 MHz. The last compilation is at nearly 100% 
logic utilization, and stops afterwards due insufficient LUTs.

OC_M1 core
This graph shows the fMAX results for the compilations of 
OC_M1, a 32 bit processor core. The Intel Arria 10 FPGA fMAX 
values are quite stable and begin to fall off a little starting at 
around 90% utilization, producing a geometric mean fMAX of 
277 MHz. The Intel Arria 10 FPGA compilations fail at about 
99% logic utilization, due to insufficient LAB resources. The 
UltraScale fMAX values also fall off at about 90% utilization, 
producing a geometric mean fMAX of 258 MHz. The last 
compilation is at about 98% logic utilization, and stops 
afterwards due to insufficient CLBs.
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OC_Aquarius core
This graph shows the fMAX results for the compilations of 
OC_Aquarius, a RISC SuperH processor core. The Intel 
Arria 10 FPGA fMAX values fall off at over 50%, producing a 
geometric mean fMAX of 103 MHz. The Intel Arria 10 FPGA 
compilations fall off due to the default compiler settings 
exhausting the M20K resources, similar to the Reed-Solomon 
case, and all of the M20K resources are exhausted at the last 
indicated compile, which is at about 70% logic utilization. The 
UltraScale fMAX values fall off slightly, producing a geometric 
mean fMAX of 106 MHz. The last compilation is at about 99% 
logic utilization, and stops afterwards due to insufficient 
CLBs.

OC_DES_DES3Perf core
This graph shows the fMAX results for the compilations of the 
OC_DES_DES3Perf, a Triple Data Encryption Standard (DES) 
function. The Intel Arria 10 FPGA fMAX values are stable and 
start to fall off at 80%+ utilization, producing a geometric 
mean fMAX of 528 MHz. The Intel Arria 10 FPGA compilations 
fail at about 98% logic utilization, due to routing congestion. 
The UltraScale fMAX values are quite stable and only fall off 
a little at 90%+ utilization, producing a geometric mean 
fMAX of 492 MHz. The last compilation is at about 98% logic 
utilization, and stops afterwards due to insufficient CLBs.

OC_FPU100 core
This graph shows the fMAX results for the compilations of 
the OC_FPU100, a floating point unit function. The Intel 
Arria 10 FPGA fMAX values are stable and start to fall off a 
little at 92%+ utilization, producing a geometric mean fMAX of 
254 MHz. The Intel Arria 10 FPGA compilations fail at nearly 
100% logic utilization, due to insufficient LAB resources. The 
UltraScale fMAX values are quite stable, producing a geometric 
mean fMAX of 232 MHz. The last compilation is at about 94% 
logic utilization, and stops afterwards due to SSI partitioning 
failure.
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Figure 12. Aquarius Results
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Conclusion
Table 2 summarizes the fMAX values reported for each of the 
OpenCore comparisons, and the relative performance of the 
Intel Arria 10 FPGA family relative to the UltraScale family. 

Across the ten benchmark designs, eight out of ten achieve 
higher fMAX values in the Intel Arria 10 FPGA family, in the 
range of 7% - 20%. As measured by device speed grades, 
which are typically defined as a difference of 10% - 15%, 
this performance advantage represents one to two speed 
grades.† Two of the benchmark designs achieve slightly 
higher performance (3%) in the competing family. In these 
two designs, the amount of M20K memory blocks in the 
Intel Arria 10 FPGA was exhausted ahead of the logic 
resources as device utilization increased, which negatively 
impacted fMAX. As a result of using default compilation 
settings, the M20K memory blocks were used exclusively 
for the memory resources required by the design. Under 
different compilation settings allowing use of the MLAB 
memory resources, it is likely that the reported fMAX for the 
Intel Arria 10 FPGA compilations would have improved. 
Future versions of the Intel Quartus Prime Software Suite 
may operate with different default compilation settings if it 
is determined that they will improve fMAX performance while 
maintaining other compilation performance metrics.

Intel provides this data and the designs upon which the 
analysis is based with the intent of increasing transparency 
and understanding among programmable logic users of 

the performance capabilities of Intel Arria 10 FPGAs. Intel 
Arria 10 FPGAs and SoCs were designed to be the highest 
performance products in their class, and the comparisons 
described in this analysis using publicly-available designs 
help to underscore and reinforce their position as the 
programmable logic industry’s highest-performance 20 nm 
FPGAs and SoCs, as measured by OpenCores designs.

References
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2 http://www.altera.com/arriaperformance
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zettabyte-generation-10.pdf

To download the design files for each of the benchmarks, 
visit http://www.altera.com/arriaperformance

# OpenCore  
Design Name Design Function

Intel Arria 10 
FPGA fMAX 
(geomean)

UltraScale fMAX 
(geomean)

Intel Arria 10 
FPGA fMAX/
UltraScale fMAX

1 oc_avr_hp_cm4 AVR Processor 320 MHz 267 MHz +20%

2 oc_warp_tmu Image Processing 248 MHz 225 MHz +10%

3 oc_reed_solomon_
decoder

Error Correction Code 325 MHz 335 MHz -3%

4 oc_usbhostslave USB 1.1 Controller 480 MHz 424 MHz +13%

5 oc_dma_axi64 Single-channel 64-bit AXI Master DMA 331 MHz 283 MHz +17%

6 oc_256_aes Advanced Encryption Standard (AES) 242 MHz 209 MHz +16%

7 oc_m1_core 32-bit RISC Processor 277 MHz 258 MHz +7%

8 oc_aquarius RISC SuperH Processor 103 MHz 106 MHz -3%

9 oc_des_des3perf Triple DES (Data Encryption Standard) 528 MHz 492 MHz +7%

10 oc_fpu100 32-bit Floating Point Unit 254 MHz 232 MHz +10%

Table 2. OpenCore Results Summary

† Tests measure performance of components on a particular test, in specific systems. 
Differences in hardware, software, or configuration will affect actual performance. Consult 
other sources of information to evaluate performance as you consider your purchase. For 
more complete information about performance and benchmark results, visit www.intel.
com/benchmarks.
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