
Draft for Review

Intel® Platform Innovation Framework
for EFI

Firmware Volume Specification

Draft for Review

Version 0.9

September 16, 2003

Firmware Volume Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright  2000–2003, Intel Corporation.

Intel order number xxxxxx-001

Draft for Review

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

Firmware Volume Specification Draft for Review

iv September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ..9
Overview..9
Scope ..9
Rationale ...9
Conventions Used in This Document...10

Data Structure Descriptions ..10
Protocol Descriptions ..11
Procedure Descriptions...11
Pseudo-Code Conventions ...12
Typographic Conventions ...12

2 Design Discussion...15
Firmware Volumes...15
Firmware Volume Protocol...15

Firmware Volume Protocol Overview ..15
Firmware Volume Protocol Stacks ..15

Firmware Volume Protocol Stack: Typical ..15
Firmware Volume Protocol Stack: Memory-Mapped Firmware Volume

Hardware ..16
Firmware Volume Protocol Stack: Direct Interface with Hardware................17

Framework Firmware Image Format..17
Framework Firmware Image Format Introduction..17
File Sections ...18

File Sections...18
Example File Image..18
Section Layout..19
Architectural Section Types ..20

Section Extraction Protocols ...21
Section Extraction Protocol Overview...21
GUIDed Section Extraction Protocol Overview ...21

File Types ...21
File Types Overview ...21

3 Code Definitions...23
Introduction..23
Firmware Volume Protocol...24

EFI_FIRMWARE_VOLUME_PROTOCOL ..24
EFI_FIRMWARE_VOLUME_PROTOCOL. GetVolumeAttributes()26
EFI_FIRMWARE_VOLUME_PROTOCOL. SetVolumeAttributes()29
EFI_FIRMWARE_VOLUME_PROTOCOL.ReadFile()...31
EFI_FIRMWARE_VOLUME_PROTOCOL. ReadSection() ...35
EFI_FIRMWARE_VOLUME_PROTOCOL.WriteFile()...38
EFI_FIRMWARE_VOLUME_PROTOCOL.GetNextFile() ..42

Firmware Volume Specification Draft for Review

vi September 2003 Version 0.9

Framework Firmware Image Format..44
File Sections ...44

EFI_COMMON_SECTION_HEADER...44
Encapsulation Sections ..46

EFI_SECTION_COMPRESSION..46
EFI_SECTION_GUID_DEFINED..48

Leaf Sections..51
EFI_SECTION_PE32..51
EFI_SECTION_PIC ..52
EFI_SECTION_TE..53
EFI_SECTION_DXE_DEPEX ...54
EFI_SECTION_VERSION ..55
EFI_SECTION_USER_INTERFACE ..56
EFI_SECTION_COMPATIBILITY16 ...57
EFI_SECTION_FIRMWARE_VOLUME_IMAGE...............................58
EFI_SECTION_FREEFORM_SUBTYPE_GUID59
EFI_SECTION_RAW ..60
EFI_SECTION_PEI_DEPEX...61

Section Extraction Protocol ...62
EFI_SECTION_EXTRACTION_PROTOCOL ...62
EFI_SECTION_EXTRACTION_PROCOCOL.OpenSectionStream()............63
EFI_SECTION_EXTRACTION_PROCOCOL.GetSection()64
EFI_SECTION_EXTRACTION_PROCOCOL.CloseSectionStream()69

GUIDed Section Extraction Protocol ...70
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL70
EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL. ExtractSection()71

File Types ...73
EFI_FV_FILETYPE ..73
EFI_FV_FILETYPE_ALL ..73
EFI_FV_FILETYPE_RAW ..74
EFI_FV_FILETYPE_FREEFORM...74
EFI_FV_FILETYPE_SECURITY_CORE ..74
EFI_FV_FILETYPE_PEI_CORE...75
EFI_FV_FILETYPE_DXE_CORE...75
EFI_FV_FILETYPE_PEIM..76
EFI_FV_FILETYPE_DRIVER ...76
EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER77
EFI_FV_FILETYPE_APPLICATION...78
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE...................................78

Draft for Review Contents

Version 0.9 September 2003 vii

Figures
Figure 2-1. Firmware Volume Protocol Stack (Typical) ...16
Figure 2-2. Firmware Volume Protocol Stack (Memory-Mapped Firmware Volume

Hardware) ..16
Figure 2-3. Firmware Volume Protocol Stack (Direct Interface with Hardware)...................17
Figure 2-4. Example File Image (Graphical and Tree Representations)19
Figure 2-5. General Section Format..20

Tables
Table 3-1. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT33
Table 3-2. Possible AuthenticationStatus Bit Values...67

Firmware Volume Specification Draft for Review

viii September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 9

1
Introduction

Overview
This specification defines the Framework image format and its associated file access protocols that
are required for an implementation the Intel® Platform Innovation Framework for EFI (hereafter
referred to as the “Framework”). This specification does the following:

• Describes the Firmware Volume Protocol, the Framework firmware image format, and
Framework file types

• Provides code definitions for services, functions, and data types that are architecturally required
by the Intel® Platform Innovation Framework for EFI Architecture Specification

Scope
This specification defines the following:

• Firmware storage interfaces
• The associated binary format that may be accessed using these interfaces

It does not, however, define the binary format of the data as it actually exists in the storage media.

Rationale
Unlike a traditional legacy BIOS, which generally is monolithic and contains few independent
components, Framework-based firmware is highly modular, consisting of many small,
independently linked components. A new approach to firmware storage is needed to ensure the
following:

• Efficient usage of the firmware devices
• A flexible storage strategy that allow various components to be found and retrieved without

a priori knowledge of exactly where to find them or the methods that are required to retrieve
them

Firmware Volume Specification Draft for Review

10 September 2003 Version 0.9

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Draft for Review Introduction

Version 0.9 September 2003 11

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Firmware Volume Specification Draft for Review

12 September 2003 Version 0.9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not

active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

Draft for Review Introduction

Version 0.9 September 2003 13

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

Firmware Volume Specification Draft for Review

14 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 15

2
Design Discussion

Firmware Volumes
A firmware device is a persistent physical repository that contains firmware code and/or data. It is
typically a flash component but may be some other type of persistent storage. A single physical
firmware device may be divided into smaller pieces to form multiple logical firmware
devices. Similarly, multiple physical firmware devices may be aggregated into one larger logical
firmware device. A logical firmware device is called a firmware volume. In the Framework, the
basic storage repository for data and/or code is the firmware volume. Each firmware volume is
organized into a file system. As such, the file is the base unit of storage for Framework firmware.

If the files contained in a firmware volume must be accessed from either the Security (SEC) or Pre-
EFI Initialization (PEI) phases or early in the Driver Execution Environment (DXE) phase, the
firmware volume must be memory mapped and follow the Framework Firmware File System (FFS)
format, which is defined in the Intel® Platform Innovation Framework for EFI Firmware File
System Specification. The SEC, PEI, and DXE phases must be able to parse the FFS and
Framework firmware image format as necessary. As such, the FFS is architectural for these types of
firmware volumes.

Firmware Volume Protocol

Firmware Volume Protocol Overview
The DXE phase accesses firmware volumes using the file abstraction contained in the Firmware
Volume Protocol. The Firmware Volume Protocol allows DXE to access all types of firmware
volumes, including the following:

• Firmware volumes that are not memory mapped
• Firmware volumes that do not implement the FFS

Firmware Volume Protocol Stacks

Firmware Volume Protocol Stack: Typical
Typically, the Firmware Volume Protocol will be produced by a file system driver and will layer on
top of the Firmware Volume Block Protocol to access the firmware volume hardware. This
implementation yields the protocol stack shown in the figure below.

See the Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification for
more information on the Firmware Volume Block Protocol.

Firmware Volume Specification Draft for Review

16 September 2003 Version 0.9

Firmware Volume
Protocol driver

Firmware Volume Block
Protocol driver

Firmware Volume
hardware

Figure 2-1. Firmware Volume Protocol Stack (Typical)

Firmware Volume Protocol Stack: Memory-Mapped Firmware Volume
Hardware

However, there is an exception to this typical stack. If the firmware volume hardware is memory
mapped, the Firmware Volume Protocol accesses the firmware volume at its memory address for
reads. All other operations still go through the Firmware Volume Block Protocol. This scenario
yields the protocol stack shown in the figure below.

See the Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification for
more information on the Firmware Volume Block Protocol.

Firmware Volume Protocol driver

Firmware Volume Block
Protocol driver

Firmware Volume hardware

All services
except read

Read services
only

Figure 2-2. Firmware Volume Protocol Stack (Memory-Mapped Firmware Volume Hardware)

Draft for Review Design Discussion

Version 0.9 September 2003 17

Firmware Volume Protocol Stack: Direct Interface with Hardware
The only other case is the degenerate case where the Firmware Volume Protocol subsumes all
functionality and interfaces with the hardware directly, as shown in the figure below.

Firmware Volume
Protocol driver

Firmware Volume
hardware

Figure 2-3. Firmware Volume Protocol Stack (Direct Interface with Hardware)

Framework Firmware Image Format

Framework Firmware Image Format Introduction
Regardless of the underlying file system implementation, consumers of the Firmware Volume
Protocol must know what the binary format of the file data is. The underlying storage is likely to be
FFS, but it may be any of the following:

• FAT32
• NTFS
• NFS
• FTP
• Any one of many other ways files are represented

In an operating system context, the contents of a file do not change depending on the type of file
system in which they are stored. Assume an executable program named “HelloWorld.” The
program image “HelloWorld” is exactly the same whether it is loaded from a FAT12 floppy or an
NFS drive.

Firmware Volume Specification Draft for Review

18 September 2003 Version 0.9

File Sections

File Sections
Many file formats have separate discrete “parts” within them. These “parts” are called file sections,
or just sections for short.

All sections begin with a header that declares the type and length of the section. The section
headers must be 4 bytes aligned within the parent file’s image.

While there are many types of sections, they fall into the following two broad categories:

• Encapsulation sections
• Leaf sections

Encapsulation sections are essentially containers that hold other sections. The sections contained
within an encapsulation section are known as child sections. In the reciprocal relationship, the
encapsulation section is known as the parent section. Encapsulation sections may have many
children. An encapsulation section’s children may be leaves and/or more encapsulation sections and
are called peers relative to each other. An encapsulation section does not contain data directly;
instead it is just a vessel that ultimately terminates in leaf sections.

Files that are built with sections can be thought of as a tree, with encapsulation sections as nodes
and leaf sections as the leaves. The file image itself can be thought of as the root and may contain
an arbitrary number of sections. Sections that exist in the root have no parent section but are still
considered peers.

Unlike encapsulation sections, leaf sections directly contain data and do not contain other
sections. The format of the data contained within a leaf section is defined by the type of the
section.

Example File Image
The figure below is an example file image comprised of sections. It shows the same file in two
ways:

• Graphically
• As a tree

The portion labeled “Graphical Representation” graphically shows the encapsulation of sections
within the file, while the “Tree Representation” portion shows a tree representation of the same file.

Draft for Review Design Discussion

Version 0.9 September 2003 19

Root

E0 L3 E1

L0 L1 L2 E2 L6

L4 L5

Tree Representation

L4

L5

E2

L6

E1

L3

L2

L1

L0

E0

Graphical Representation

Complete file image

Encapsulation section (En)

Leaf section (Ln)

Figure 2-4. Example File Image (Graphical and Tree Representations)

In the example shown in the figure above, the file image root contains two encapsulation sections
(E0 and E1) and one leaf section (L3). The first encapsulation section (E0) contains children, all of
which are leaves (L0, L1, and L2). The second encapsulation section (E1) contains two children,
one that is an encapsulation (E2) and the other that is a leaf (L6). The last encapsulation section
(E2), in turn, has two children that are both leaves (L4 and L5).

Section Layout
Each section begins with a section header, followed by data defined by the section type.

The section headers are 4 bytes aligned within the parent file’s image. If padding is required
between the end of one section and the beginning of the next to achieve the 4-byte alignment
requirement, all padding bytes must be initialized to zero.

Many section types are variable in length and are more accurately described as data streams rather
than data structures. Since it is not possible to describe variable-sized structures in the C

Firmware Volume Specification Draft for Review

20 September 2003 Version 0.9

programming language, Backus-Naur Form (BNF) is used to describe section types that have
variable lengths. C data structures are considered terminals with respect to the BNF description.

Regardless of section type, all section headers begin with a 24-bit integer indicating the section
size, followed by an 8-bit section type. The format of the remainder of the section header and the
section data is defined by the section type. The figure below shows the general format of a section.

…
Section data: Format defined by section type

…

Remainder of section header: Format defined by section type (not all sections will have this portion)

Type Length

31 0

Figure 2-5. General Section Format

Architectural Section Types
This specification defines the following architectural types of sections.

Encapsulation Section Types
• Compression
• GUID-defined

Leaf Section Types
• PE32+ image
• Position-independent code (PIC) image
• Terse Executable (TE)
• DXE dependency expression
• Version
• User interface file name
• Compatibility16 image
• Firmware volume image
• Free-form subtype GUID
• Raw
• PEI dependency expression

See Code Definitions: Framework Firmware Image Format for the definitions of the section types
listed above.

Draft for Review Design Discussion

Version 0.9 September 2003 21

Section Extraction Protocols

Section Extraction Protocol Overview
Because some types of files may be arbitrarily complex with respect to encapsulation sections,
a code-friendly way of retrieving sections is necessary to facilitate a reasonable implementation
of the Firmware Volume Protocol. The Section Extraction Protocol is the API that abstracts the
complexities of file construction and provides a straightforward mechanism to extract sections
from files.

It is expected that drivers producing the Firmware Volume Protocol will be the only consumers of
the Section Extraction Protocol. All other consumers of file sections must use the Firmware
Volume Protocol’s ReadFile() API. Furthermore, it is expected that all caching of firmware
files and sections thereof will be done within the implementation of the Section Extraction
Protocol. These two guidelines enable both performance and code size optimization, as well as
preventing cache coherency problems with respect to firmware files.

GUIDed Section Extraction Protocol Overview
The GUIDed Section Extraction Protocol is used by the section extraction driver to enable
extraction of GUIDed sections. It is essentially a “plug-in” to enable extensibility to
section extraction.

File Types

File Types Overview
Consider an application file named FOO.EXE. The format of the contents of FOO.EXE is implied
by the “.EXE” in the file name. Depending on the operating environment, this extension typically
indicates that the contents of FOO.EXE are a PE/COFF image and follow the PE/COFF image
format.

Similarly, the Framework image format defines the contents of a file that is returned by the
firmware volume interface.

The Framework image format defines an enumeration of file types. For example, the type
EFI_FV_FILETYPE_DRIVER indicates that the file is a DXE driver and is interesting to the
DXE Dispatcher. In the same way, files with the type EFI_FV_FILETYPE_PEIM are interesting
to the PEI Dispatcher. In an FFS firmware volume, the file type is captured in the Type field of the
FFS file header, EFI_FFS_FILE_HEADER; see the Intel® Platform Innovation Framework for
EFI Firmware File System Specification for the definition of the FFS file header.

This specification defines the following ten architectural file types:

• EFI_FV_FILETYPE_RAW

• EFI_FV_FILETYPE_FREEFORM

• EFI_FV_FILETYPE_SECURITY_CORE

• EFI_FV_FILETYPE_PEI_CORE

• EFI_FV_FILETYPE_DXE_CORE

• EFI_FV_FILETYPE_PEIM

Firmware Volume Specification Draft for Review

22 September 2003 Version 0.9

• EFI_FV_FILETYPE_DRIVER

• EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER

• EFI_FV_FILETYPE_APPLICATION

• EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE

An additional file type, EFI_FV_FILETYPE_ALL, is defined in “Code Definitions,” but it is only
a pseudo type; see its code definition for details.

Draft for Review

Version 0.9 September 2003 23

3
Code Definitions

Introduction
This section contains the basic definitions of the Framework image format and its associated file
access protocols. The following protocols and data types are defined in this section:

• EFI_FIRMWARE_VOLUME_PROTOCOL

• EFI_COMMON_SECTION_HEADER and the defined section types
• EFI_SECTION_EXTRACTION_PROTOCOL

• EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

• EFI_FV_FILETYPE and the defined Framework file types

This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in “Related Definitions” of the parent data structure or function definition:

• EFI_FV_ATTRIBUTES

• EFI_FV_FILE_ATTRIBUTES

• EFI_FV_WRITE_POLICY

• EFI_SECTION_TYPE

• EFI_COMPRESSION_SECTION_HEADER

Firmware Volume Specification Draft for Review

24 September 2003 Version 0.9

Firmware Volume Protocol

EFI_FIRMWARE_VOLUME_PROTOCOL

Summary
The Firmware Volume Protocol provides file-level access to the firmware volume. Each firmware
volume driver must produce an instance of the Firmware Volume Protocol if the firmware volume
is to be visible to the system. The Firmware Volume Protocol also provides mechanisms for
determining and modifying some attributes of the firmware volume.

GUID
// 389F751F-1838-4388-8390-CD8154BD27F8

#define EFI_FIRMWARE_VOLUME_PROTOCOL_GUID \
{ 0x389F751F, 0x1838, 0x4388, 0x83, 0x90, 0xCD, 0x81, \
0x54, 0xBD, 0x27, 0xF8 }

Protocol Interface Structure
typedef struct {

EFI_FV_GET_ATTRIBUTES GetVolumeAttributes;
EFI_FV_SET_ATTRIBUTES SetVolumeAttributes;
EFI_FV_READ_FILE ReadFile;
EFI_FV_READ_SECTION ReadSection;
EFI_FV_WRITE_FILE WriteFile;
EFI_FV_GET_NEXT_FILE GetNextFile;
UINT32 KeySize;
EFI_HANDLE ParentHandle;

} EFI_FIRMWARE_VOLUME_PROTOCOL;

Parameters
GetVolumeAttributes

Retrieves volume capabilities and current settings. See the
GetVolumeAttributes() function description.

SetVolumeAttributes

Modifies the current settings of the firmware volume. See the
SetVolumeAttributes() function description.

ReadFile

Reads an entire file from the firmware volume. See the ReadFile() function
description.

ReadSection

Reads a single section from a file into a buffer. See the ReadSection() function
description.

Draft for Review Code Definitions

Version 0.9 September 2003 25

WriteFile

Writes an entire file into the firmware volume. See the WriteFile() function
description.

GetNextFile

Provides service to allow searching the firmware volume. See the GetNextFile()
function description.

KeySize

Data field that indicates the size in bytes of the Key input buffer for the
GetNextFile() API.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
The Firmware Volume Protocol contains the file-level abstraction to the firmware volume as well
as some firmware volume attribute reporting and configuration services. The Firmware Volume
Protocol is the interface used by all parts of DXE that are not directly involved with managing the
firmware volume itself. This abstraction allows many varied types of firmware volume
implementations. A firmware volume may be a flash device or it may be a file in the EFI system
partition, for example. This level of firmware volume implementation detail is not visible to the
consumers of the Firmware Volume Protocol.

Firmware Volume Specification Draft for Review

26 September 2003 Version 0.9

EFI_FIRMWARE_VOLUME_PROTOCOL. GetVolumeAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
EFI_STATUS
(EFIAPI * EFI_FV_GET_ATTRIBUTES) (

IN EFI_FIRMWARE_VOLUME_PROTOCOL *This,
OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_PROTOCOL instance.

FvAttributes

Pointer to an EFI_FV_ATTRIBUTES in which the attributes and current settings
are returned. Type EFI_FV_ATTRIBUTES is defined in “Related Definitions”
below.

Description
Because of constraints imposed by the underlying firmware storage, an instance of the Firmware
Volume Protocol may not be to able to support all possible variations of this architecture. These
constraints and the current state of the firmware volume are exposed to the caller using the
GetVolumeAttributes() function.

GetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the EFI 1.10 Specification.

Related Definitions
//**
// EFI_FV_ATTRIBUTES
//**

typedef UINT64 EFI_FV_ATTRIBUTES;

//**
// EFI_FV_ATTRIBUTES bit definitions
//**
#define EFI_FV_READ_DISABLE_CAP 0x0000000000000001
#define EFI_FV_READ_ENABLE_CAP 0x0000000000000002
#define EFI_FV_READ_STATUS 0x0000000000000004

Draft for Review Code Definitions

Version 0.9 September 2003 27

#define EFI_FV_WRITE_DISABLE_CAP 0x0000000000000008
#define EFI_FV_WRITE_ENABLE_CAP 0x0000000000000010
#define EFI_FV_WRITE_STATUS 0x0000000000000020

#define EFI_FV_LOCK_CAP 0x0000000000000040
#define EFI_FV_LOCK_STATUS 0x0000000000000080
#define EFI_FV_WRITE_POLICY_RELIABLE 0x0000000000000100

#define EFI_FV_ALIGNMENT_CAP 0x0000000000008000
#define EFI_FV_ALIGNMENT_2 0x0000000000010000
#define EFI_FV_ALIGNMENT_4 0x0000000000020000
#define EFI_FV_ALIGNMENT_8 0x0000000000040000
#define EFI_FV_ALIGNMENT_16 0x0000000000080000
#define EFI_FV_ALIGNMENT_32 0x0000000000100000
#define EFI_FV_ALIGNMENT_64 0x0000000000200000
#define EFI_FV_ALIGNMENT_128 0x0000000000400000
#define EFI_FV_ALIGNMENT_256 0x0000000000800000
#define EFI_FV_ALIGNMENT_512 0x0000000001000000
#define EFI_FV_ALIGNMENT_1K 0x0000000002000000
#define EFI_FV_ALIGNMENT_2K 0x0000000004000000
#define EFI_FV_ALIGNMENT_4K 0x0000000008000000
#define EFI_FV_ALIGNMENT_8K 0x0000000010000000
#define EFI_FV_ALIGNMENT_16K 0x0000000020000000
#define EFI_FV_ALIGNMENT_32K 0x0000000040000000
#define EFI_FV_ALIGNMENT_64K 0x0000000080000000

// EFI_FV_ATTRIBUTES bit semantics

Following is a description of the fields in the above definition.

EFI_FV_READ_DISABLED_CAP Set to 1 if it is possible to disable reads from the firmware volume.

EFI_FV_READ_ENABLED_CAP Set to 1 if it is possible to enable reads from the firmware volume.

EFI_FV_READ_STATUS Indicates the current read state of the firmware volume. Set to 1 if
reads from the firmware volume are enabled.

EFI_FV_WRITE_DISABLED_CAP Set to 1 if it is possible to disable writes to the firmware volume.

EFI_FV_WRITE_ENABLED_CAP Set to 1 if it is possible to enable writes to the firmware volume.

EFI_FV_WRITE_STATUS Indicates the current state of the firmware volume. Set to 1 if writes
to the firmware volume are enabled.

EFI_FV_LOCK_CAP Set to 1 if it is possible to lock firmware volume read/write
attributes.

Firmware Volume Specification Draft for Review

28 September 2003 Version 0.9

EFI_FV_LOCK_STATUS Set to 1 if firmware volume attributes are locked down.

EFI_FV_WRITE_POLICY_RELIABLE Set to 1 if the firmware volume supports “reliable” writes. See
EFI_FIRMWARE_VOLUME_PROTOCOL.WriteFile().

EFI_FV_ALIGNMENT_CAP Set to 1 if the firmware volume supports alignment attributes for
files. If EFI_FV_ALIGNMENT_CAP==0, then all
EFI_FV_ALIGNMENT_{alignment value} bits are
cleared to zero.

EFI_FV_ALIGNMENT_{alignment_value} Each if these bits indicates whether or not the firmware volume
supports the alignment_value. A value of 1 indicates the
alignment_value is supported.

All other bits are reserved and are cleared to zero.

Status Codes Returned
EFI_SUCCESS The firmware volume attributes were returned.

Draft for Review Code Definitions

Version 0.9 September 2003 29

EFI_FIRMWARE_VOLUME_PROTOCOL. SetVolumeAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
EFI_STATUS
(EFIAPI * EFI_FV_SET_ATTRIBUTES) (

IN EFI_FIRMWARE_VOLUME_PROTOCOL *This,
IN OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_PROTOCOL instance.

FvAttributes

On input, FvAttributes is a pointer to an EFI_FV_ATTRIBUTES containing
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. On unsuccessful return, FvAttributes is not
modified and the firmware volume settings are not changed. Type
EFI_FV_ATTRIBUTES is defined in GetVolumeAttributes().

Description
The SetVolumeAttributes() function is used to set configurable firmware volume
attributes. Only EFI_FV_READ_STATUS, EFI_FV_WRITE_STATUS, and
EFI_FV_LOCK_STATUS may be modified, and then only in accordance with the declared
capabilities. All other bits of *FvAttributes are ignored on input. On successful return, all bits
of *FvAttributes are valid and it contains the completed EFI_FV_ATTRIBUTES
for the volume.

To modify an attribute, the corresponding status bit in the EFI_FV_ATTRIBUTES is set to the
desired value on input. The EFI_FV_LOCK_STATUS bit does not affect the ability to read or
write the firmware volume. Rather, once the EFI_FV_LOCK_STATUS bit is set, it prevents further
modification to all the attribute bits.

SetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
SetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the EFI 1.10 Specification.

Firmware Volume Specification Draft for Review

30 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The requested firmware volume attributes were set and the

resulting EFI_FV_ATTRIBUTES is returned in
FvAttributes.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is set to 1 on
input, but the device does not support enabling reads
(FvAttributes:EFI_FV_READ_ENABLE_CAP is clear
on return from GetVolumeAttributes()). Actual volume
attributes are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is cleared to 0
on input, but the device does not support disabling reads
(FvAttributes:EFI_FV_READ_DISABLE_CAP is
clear on return from GetVolumeAttributes()). Actual
volume attributes are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is set to 1 on
input, but the device does not support enabling writes
(FvAttributes:EFI_FV_WRITE_ENABLE_CAP is
clear on return from GetVolumeAttributes()). Actual
volume attributes are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is cleared to
0 on input, but the device does not support disabling writes
(FvAttributes:EFI_FV_WRITE_DISABLE_CAP is
clear on return from GetVolumeAttributes()). Actual
volume attributes are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_LOCK_STATUS is set on input,
but the device does not support locking
(FvAttributes:EFI_FV_LOCK_CAP is clear on return
from GetVolumeAttributes()). Actual volume
attributes are unchanged.

EFI_ACCESS_DENIED Device is locked and does not allow attribute modification
(FvAttributes:EFI_FV_LOCK_STATUS is set on
return from GetVolumeAttributes()). Actual volume
attributes are unchanged.

Draft for Review Code Definitions

Version 0.9 September 2003 31

EFI_FIRMWARE_VOLUME_PROTOCOL.ReadFile()

Summary
Retrieves a file and/or file information from the firmware volume.

Prototype
EFI_STATUS
(EFIAPI * EFI_FV_READ_FILE) (

IN EFI_FIRMWARE_VOLUME_PROTOCOL *This,
IN EFI_GUID *NameGuid,
IN OUT VOID **Buffer,
IN OUT UINTN *BufferSize,
OUT EFI_FV_FILETYPE *FoundType,
OUT EFI_FV_FILE_ATTRIBUTES *FileAttributes,
OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which is the file name. All firmware file names are
EFI_GUIDs. A single firmware volume must not have two valid files with the same
file name EFI_GUID. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Buffer

Pointer to a pointer to a buffer in which the file or section contents are returned. See
“Description” below for more details on the use of the Buffer parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented
by *Buffer. See “Description” below for more details on the use of the
BufferSize parameter.

FoundType

Pointer to a caller-allocated EFI_FV_FILETYPE. See Code Definitions: File Types
for EFI_FV_FILETYPE related definitions.

FileAttributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. Type
EFI_FV_FILE_ATTRIBUTES is defined in “Related Definitions” below.

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See “Related Definitions” in

Firmware Volume Specification Draft for Review

32 September 2003 Version 0.9

EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more
information.

Description
ReadFile() is used to retrieve any file from a firmware volume during the DXE phase. The
actual binary encoding of the file in the firmware volume media may be in any arbitrary format as
long as it does the following:

• It is accessed using the Firmware Volume Protocol.
• The image that is returned follows the image format defined in Code Definitions: Framework

Firmware Image Format.

If the input value of Buffer==NULL, it indicates the caller is requesting only that the type,
attributes, and size of the file be returned and that there is no output buffer. In this case, the
following occurs:

• *BufferSize is returned with the size that is required to successfully complete the read.
• The output parameters *FoundType and *FileAttributes are returned with valid

values.
• The returned value of *AuthenticationStatus is undefined.

If the input value of Buffer!=NULL, the output buffer is specified by a double indirection of the
Buffer parameter. The input value of *Buffer is used to determine if the output buffer is caller
allocated or is dynamically allocated by ReadFile().

If the input value of *Buffer!=NULL, it indicates the output buffer is caller allocated. In this
case, the input value of *BufferSize indicates the size of the caller-allocated output buffer. If
the output buffer is not large enough to contain the entire requested output, it is filled up to the
point that the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and
then *BufferSize is returned with the size required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadFile(). In this case, ReadFile() will allocate an appropriately sized buffer from boot
services pool memory, which will be returned in *Buffer. The size of the new buffer is returned
in *BufferSize and all other output parameters are returned with valid values.

ReadFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of ReadFile()
at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the EFI 1.10 Specification.

Related Definitions
//**
// EFI_FV_FILE_ATTRIBUTES
//**

typedef UINT32 EFI_FV_FILE_ATTRIBUTES;

#define EFI_FV_FILE_ATTRIB_ALIGNMENT 0x0000001F

Draft for Review Code Definitions

Version 0.9 September 2003 33

31 5 4 0

Reserved – must be 0 EFI_FV_FILE_ATTRIB_
ALIGNMENT

The Reserved field must be set to zero.

The EFI_FV_FILE_ATTRIB_ALIGNMENT field indicates that the beginning of the data must
be aligned on a particular boundary relative to the beginning of the firmware volume. This
alignment only makes sense for block-oriented firmware volumes. This field is an enumeration
of alignment possibilities. The allowable alignments are powers of two from byte alignment to
64 KB alignment. The supported alignments are described in the table below. All other values
are reserved.

Table 3-1. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT

Required Alignment
(bytes)

Alignment Value in
Attributes Field

1 0

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1 KB 10

2 KB 11

4 KB 12

8 KB 13

16 KB 14

32 KB 15

64 KB 16

Firmware Volume Specification Draft for Review

34 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_TOO_SMALL The buffer is too small to contain the requested output. The
buffer is filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND Name was not found in the firmware volume.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the
firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Draft for Review Code Definitions

Version 0.9 September 2003 35

EFI_FIRMWARE_VOLUME_PROTOCOL. ReadSection()

Summary
Locates the requested section within a file and returns it in a buffer.

Prototype
EFI_STATUS
(EFIAPI * EFI_FV_READ_SECTION) (

IN EFI_FIRMWARE_VOLUME_PROTOCOL *This,
IN EFI_GUID *NameGuid,
IN EFI_SECTION_TYPE SectionType,
IN UINTN SectionInstance,
IN OUT VOID **Buffer,
IN OUT UINTN *BufferSize,
OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which indicates the file name from which the requested
section will be read. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

SectionType

Indicates the section type to return. SectionType in conjunction with
SectionInstance indicates which section to return. Type
EFI_SECTION_TYPE is defined in EFI_COMMON_SECTION_HEADER.

SectionInstance

Indicates which instance of sections with a type of SectionType to return.
SectionType in conjunction with SectionInstance indicates which section
to return. SectionInstance is zero based.

Buffer

Pointer to a pointer to a buffer in which the file or section contents are returned, not
including the section header. See “Description” below for more details on the usage
of the Buffer parameter.

Firmware Volume Specification Draft for Review

36 September 2003 Version 0.9

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented
by *Buffer. See “Description” below for more details on the usage of the
BufferSize parameter.

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more
information.

Description
ReadSection() is used to retrieve a specific section from a file within a firmware volume. The
section returned is determined using a depth-first, left-to-right search algorithm through all sections
found in the specified file. See Code Definitions: Framework Firmware Image Format for more
details about sections.

The output buffer is specified by a double indirection of the Buffer parameter. The input value
of *Buffer is used to determine if the output buffer is caller allocated or is dynamically allocated
by ReadSection().

If the input value of *Buffer!=NULL, it indicates that the output buffer is caller allocated. In
this case, the input value of *BufferSize indicates the size of the caller-allocated output buffer.
If the output buffer is not large enough to contain the entire requested output, it is filled up to the
point that the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and
then *BufferSize is returned with the size that is required to successfully complete the read.
All other output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadSection(). In this case, ReadSection() will allocate an appropriately sized buffer
from boot services pool memory, which will be returned in *Buffer. The size of the new buffer
is returned in *BufferSize and all other output parameters are returned with valid values.

ReadSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ReadSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the EFI 1.10 Specification.

Draft for Review Code Definitions

Version 0.9 September 2003 37

Status Codes Returned
EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_
TOO_SMALL

The caller-allocated buffer is too small to contain the requested
output. The buffer is filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND The requested file was not found in the firmware volume.

EFI_NOT_FOUND The requested section was not found in the specified file.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the
firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

EFI_PROTOCOL_ERROR The requested section was not found, but the file could not be fully
parsed because a required
GUIDED_SECTION_EXTRACTION_PROTOCOL was not
found. It is possible the requested section exists within the file
and could be successfully extracted once the required
GUIDED_SECTION_EXTRACTION_PROTOCOL is
published.

Firmware Volume Specification Draft for Review

38 September 2003 Version 0.9

EFI_FIRMWARE_VOLUME_PROTOCOL.WriteFile()

Summary
Writes one or more files to the firmware volume.

Prototype
EFI_STATUS
(EFIAPI * EFI_FV_WRITE_FILE) (

IN EFI_FIRMWARE_VOLUME_PROTOCOL *This,
IN UINT32 NumberOfFiles,
IN EFI_FV_WRITE_POLICY WritePolicy,
IN EFI_FV_WRITE_FILE_DATA *FileData
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_PROTOCOL instance.

NumberOfFiles

Indicates the number of elements in the array pointed to by FileData.

WritePolicy

Indicates the level of reliability for the write in the event of a power failure or other
system failure during the write operation. Type EFI_FV_WRITE_POLICY is
defined in “Related Definitions” below.

FileData

Pointer to an array of EFI_FV_WRITE_FILE_DATA. Each element of
FileData[] represents a file to be written. Type EFI_FV_WRITE_FILE_DATA
is defined in “Related Definitions” below.

Description
WriteFile() is used to write one or more files to a firmware volume. Each file to be written is
described by an EFI_FV_WRITE_FILE_DATA structure.

The caller must ensure that any required alignment for all files listed in the FileData array is
compatible with the firmware volume. Firmware volume capabilities can be determined using the
GetVolumeAttributes() call.

Similarly, if the WritePolicy is set to EFI_FV_RELIABLE_WRITE, the caller must check the
firmware volume capabilities to ensure EFI_FV_RELIABLE_WRITE is supported by the
firmware volume. EFI_FV_UNRELIABLE_WRITE must always be supported.

Writing a file with a size of zero (FileData[n].BufferSize == 0) deletes the file from the
firmware volume if it exists. Deleting a file must be done one at a time. Deleting a file as part of a
multiple file write is not allowed.

Draft for Review Code Definitions

Version 0.9 September 2003 39

WriteFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of
WriteFile() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the EFI 1.10 Specification.

Related Definitions
//**
// EFI_FV_WRITE_POLICY
//**

typedef UINT32 EFI_FV_WRITE_POLICY

#define EFI_FV_UNRELIABLE_WRITE 0x00000000
#define EFI_FV_RELIABLE_WRITE 0x00000001

All other values of EFI_FV_WRITE_POLICY are reserved. Following is a description of the
fields in the above definition.

EFI_FV_UNRELIABLE_WRITE This value in the WritePolicy parameter indicates that
there is no required reliability if a power failure or other system
failure occurs during a write operation. Updates may leave a
combination of old and new files. Data loss, including complete
loss of all files involved, is also permissible. In essence, no
guarantees are made regarding what files will be present
following a system failure during a write with a WritePolicy
of EFI_FV_UNRELIABLE_WRITE. The advantage of this
mode is that it can be implemented to use much less space in
the storage media. Space-constrained firmware volumes may
be able to support writes where it would be otherwise impossible.

EFI_FV_RELIABLE_WRITE This value in the WritePolicy parameter indicates that, on
the next initialization of the firmware volume following a power
failure or other system failure during a write, all files listed in the
FileData array are completely written and are valid, or none
is written and the state of the firmware volume is the same as it
was before the write operation was attempted.

Firmware Volume Specification Draft for Review

40 September 2003 Version 0.9

//**
// EFI_FV_WRITE_FILE_DATA
//**

typedef struct {
EFI_GUID *NameGuid,
EFI_FV_FILETYPE Type,
EFI_FV_FILE_ATTRIBUTES FileAttributes
VOID *Buffer,
UINT32 BufferSize

} EFI_FV_WRITE_FILE_DATA;

NameGuid

Pointer to a GUID, which is the file name to be written. Type EFI_GUID is defined
in InstallProtocolInterface() in the EFI 1.10 Specification.

Type

Indicates the type of file to be written. Type EFI_FV_FILETYPE is defined in
Code Definitions: File Types.

FileAttributes

Indicates the attributes for the file to be written. Type
EFI_FV_FILE_ATTRIBUTES is defined in ReadFile().

Buffer

Pointer to a buffer containing the file to be written.

BufferSize

Indicates the size of the file image contained in Buffer.

Draft for Review Code Definitions

Version 0.9 September 2003 41

Status Codes Returned
EFI_SUCCESS The write completed successfully.

EFI_OUT_OF_RESOURCES The firmware volume does not have enough free space to
store file(s).

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the
firmware volume.

EFI_WRITE_PROTECTED The firmware volume is configured to disallow writes.

EFI_NOT_FOUND A delete was requested, but the requested file was not found in
the firmware volume.

EFI_INVALID_PARAMETER A delete was requested with a multiple file write.

EFI_INVALID_PARAMETER An unsupported WritePolicy was requested.

EFI_INVALID_PARAMETER An unknown file type was specified.

EFI_INVALID_PARAMETER A file system specific error has occurred.

Other than EFI_DEVICE_ERROR, all error codes imply the firmware volume has not been
modified. In the case of EFI_DEVICE_ERROR, the firmware volume may have been corrupted
and appropriate repair steps must be taken.

Firmware Volume Specification Draft for Review

42 September 2003 Version 0.9

EFI_FIRMWARE_VOLUME_PROTOCOL.GetNextFile()

Summary
Retrieves information about the next file in the firmware volume store that matches the
search criteria.

Prototype
EFI_STATUS
(EFIAPI * EFI_FV_GET_NEXT_FILE) (

IN EFI_FIRMWARE_VOLUME_PROTOCOL *This,
IN OUT VOID *Key,
IN OUT EFI_FV_FILETYPE *FileType,
OUT EFI_GUID *NameGuid,
OUT EFI_FV_FILE_ATTRIBUTES *Attributes,
OUT UINTN *Size
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_PROTOCOL instance.

Key

Pointer to a caller-allocated buffer that contains implementation-specific data that is
used to track where to begin the search for the next file. The size of the buffer must
be at least This->KeySize bytes long. To reinitialize the search and begin from
the beginning of the firmware volume, the entire buffer must be cleared to zero.
Other than clearing the buffer to initiate a new search, the caller must not modify the
data in the buffer between calls to GetNextFile().

FileType

Pointer to a caller-allocated EFI_FV_FILETYPE. The GetNextFile() API can
filter its search for files based on the value of the *FileType input. A
*FileType input of EFI_FV_FILETYPE_ALL causes GetNextFile() to
search for files of all types. If a file is found, the file’s type is returned in
*FileType. *FileType is not modified if no file is found. See Code
Definitions: File Types for EFI_FV_FILETYPE related definitions.

NameGuid

Pointer to a caller-allocated EFI_GUID. If a matching file is found, the file’s name
is returned in*NameGuid. If no matching file is found, *NameGuid is not
modified. Type EFI_GUID is defined in InstallProtocolInterface() in
the EFI 1.10 Specification.

Draft for Review Code Definitions

Version 0.9 September 2003 43

Attributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. If a matching file is
found, the file’s attributes are returned in *Attributes. If no matching file is
found, *Attributes is not modified. Type EFI_FV_FILE_ATTRIBUTES is
defined in ReadFile().

Size

Pointer to a caller-allocated UINTN. If a matching file is found, the file’s size is
returned in *Size. If no matching file is found, *Size is not modified.

Description
GetNextFile() is the interface that is used to search a firmware volume for a particular file. It
is called successively until the desired file is located or the function returns EFI_NOT_FOUND.

To filter uninteresting files from the output, the type of file to search for may be specified in
*FileType. For example, if *FileType is EFI_FV_FILETYPE_DRIVER, only files of this
type will be returned in the output. If *FileType is EFI_FV_FILETYPE_ALL, no filtering of
file types is done.

The Key parameter is used to indicate a starting point of the search. If the buffer *Key is
completely initialized to zero, the search reinitialized and starts at the beginning. Subsequent calls
to GetNextFile() must maintain the value of *Key returned by the immediately previous call.
The actual contents of *Key are implementation specific and no semantic content is implied.

GetNextFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetNextFile() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the EFI 1.10 Specification.

Status Codes Returned
EFI_SUCCESS The output parameters are filled with data obtained from the first

matching file that was found.

EFI_NOT_FOUND No files of type FileType were found.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware
volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Firmware Volume Specification Draft for Review

44 September 2003 Version 0.9

Framework Firmware Image Format

File Sections

EFI_COMMON_SECTION_HEADER

Summary
Defines the common header for all the section types.

Prototype
typedef struct {

UINT8 Size[3];
EFI_SECTION_TYPE Type;

} EFI_COMMON_SECTION_HEADER;

Parameters
Size

A 24-bit unsigned integer that contains the total size of the section in bytes, including
the EFI_COMMON_SECTION_HEADER. For example, a zero-length section has a
Size of 4 bytes.

Type

Declares the section type. Type EFI_SECTION_TYPE is defined in “Related
Definitions” below.

Description
The type EFI_COMMON_SECTION_HEADER defines the common header for all the section types.

Related Definitions
//**
// EFI_SECTION_TYPE
//**

typedef UINT8 EFI_SECTION_TYPE;

//**
// The section type EFI_SECTION_ALL is a pseudo type. It is
// used as a wild card when retrieving sections. The section
// type EFI_SECTION_ALL matches all section types.
//**

#define EFI_SECTION_ALL 0x00

Draft for Review Code Definitions

Version 0.9 September 2003 45

//**
// Encapsulation section Type values
//**
#define EFI_SECTION_COMPRESSION 0x01
#define EFI_SECTION_GUID_DEFINED 0x02

//**
// Leaf section Type values
//**
#define EFI_SECTION_PE32 0x10
#define EFI_SECTION_PIC 0x11
#define EFI_SECTION_TE 0x12
#define EFI_SECTION_DXE_DEPEX 0x13
#define EFI_SECTION_VERSION 0x14
#define EFI_SECTION_USER_INTERFACE 0x15
#define EFI_SECTION_COMPATIBILITY16 0x16
#define EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17
#define EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18
#define EFI_SECTION_RAW 0x19
#define EFI_SECTION_PEI_DEPEX 0x1B

All other values are reserved for future use.

Firmware Volume Specification Draft for Review

46 September 2003 Version 0.9

Encapsulation Sections

EFI_SECTION_COMPRESSION

Summary
An encapsulation section type in which the section data is compressed.

Prototype
CompressionSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
< EFI_COMPRESSION_SECTION_HEADER CompressionHeader >
{ CompressedData }

CompressedData :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Usual common section header. CommonHeader.Type =
EFI_SECTION_COMPRESSION.

CompressionHeader

Compression-section-specific header. Type
EFI_COMPRESSION_SECTION_HEADER is defined in “Related Definitions”
below.

CompressedData

An array of zero or more bytes. Data is compressed using the compression algorithm
indicated by CompressionHeader.CompressionType. Once decompressed,
it can be interpreted as a section stream.

Description
A compression section is an encapsulation section in which the section data is compressed. To
process the contents and extract the enclosed section stream, the section data must be decompressed
using the decompressor indicated by the CompressionHeader.CompressionType
parameter. The decompressed image is then interpreted as a section stream.

Draft for Review Code Definitions

Version 0.9 September 2003 47

Related Definitions
//**
// EFI_COMPRESSION_SECTION_HEADER
//**

typedef struct {
UINT32 UncompressedLength;
UINT8 CompressionType;

} EFI_COMPRESSION_SECTION_HEADER;

UncompressedLength

UINT32 that indicates the size of the section data after decompression.

CompressionType

Indicates what compression algorithm is used.

//**
// CompressionType values
//**
#define EFI_NOT_COMPRESSED 0x00
#define EFI_STANDARD_COMPRESSION 0x01

Following is a description of the fields in the above definition.

EFI_NOT_COMPRESSED Indicates that the encapsulated section stream is not compressed.
This type is useful to grouping sections together without requiring
a decompressor.

EFI_STANDARD_COMPRESSION Indicates that the encapsulated section stream is compressed using
the compression standard defined by the EFI Specification.

Firmware Volume Specification Draft for Review

48 September 2003 Version 0.9

EFI_SECTION_GUID_DEFINED

Summary
An encapsulation section type in which the method of encapsulation is defined by an identifying
GUID.

Prototype
GuidDefinedSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
GuidedSectionHeader
{ Data }

GuidedSectionHeader :
< EFI_GUID SectionDefinitionGuid >

< UINT16 DataOffset >
< UINT16 Attributes >
{ GuidSpecificHeaderFields }

GuidSpecificHeaderFields :
< UINT8 > { < UINT8 > }

Data :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_GUID_DEFINED.

GuidedSectionHeader.SectionDefinitionGuid

GUID that defines the format of the data that follows. It is in essence a vendor-
defined section type. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

GuidedSectionHeader.DataOffset

Contains the offset in bytes from the beginning of the common header to the first
byte of the data.

GuidedSectionHeader.Attributes

Bit field that declares some specific characteristics of the section contents. The bits
are defined as shown in “Related Definitions” below.

Draft for Review Code Definitions

Version 0.9 September 2003 49

GuidSpecificHeaderFields

Zero or more bytes of data that is defined by the section’s GUID. An example of this
data would be a digital signature and manifest.

Data

Zero or more bytes of arbitrary data. The format of the data is defined by
SectionDefinitionGuid.

Description
A GUID-defined section contains a section-type-specific header that contains an identifying GUID,
followed by an arbitrary amount of data. It is an encapsulation section in which the method of
encapsulation is defined by the GUID. A matching instance of the GUIDed Section Extraction
Protocol is required to extract the contents of this encapsulation section. (See
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL for details of the GUIDed Section
Extraction Protocol)

The GUID-defined section enables original equipment manufacturers (OEMs) to define custom
encapsulation section types for any purpose. One commonly expected use is creating an
encapsulation section to enable a cryptographic authentication of the section contents.

Related Definitions
//***
// Bit values for GuidedSectionHeader.Attributes
//***

#define EFI_GUIDED_SECTION_PROCESSING_REQUIRED 0x01
#define EFI_GUIDED_SECTION_AUTH_STATUS_VALID 0x02

Following is a description of the fields in the above definition:

EFI_GUIDED_SECTION_
PROCESSING_REQUIRED

Set to 1 if the section requires processing to obtain meaningful data
from the section contents. Processing would be required, for
example, if the section contents were encrypted or compressed. If
the EFI_GUIDED_SECTION_PROCESSING_REQUIRED bit
is cleared to zero, it is possible to retrieve the section’s contents
without processing in the absence of an associated instance of the
GUIDed Section Extraction Protocol. In this case, the beginning of
the encapsulated section stream is indicated by the value of
GuidedSectionHeader.DataOffset.

EFI_GUIDED_SECTION_AUTH_
STATUS_VALID

Set to 1 if the section contains authentication data that is reported
through the AuthenticationStatus parameter returned
from the GUIDed Section Extraction Protocol. If the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit is
clear, the AuthenticationStatus parameter is not used.
See EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.
ExtractSection() for details.

Firmware Volume Specification Draft for Review

50 September 2003 Version 0.9

All other bits are reserved and must be set to zero. Together, the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED and
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bits provide the necessary data for
EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() to set the proper bits of the
AuthenticationStatus output parameter in the event that no
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is available and the data is still returned.

Draft for Review Code Definitions

Version 0.9 September 2003 51

Leaf Sections

EFI_SECTION_PE32

Summary
A leaf section type that contains a complete PE32+ image.

Prototype
Pe32Section :

< EFI_COMMON_SECTION_HEADER CommonHeader >
{ Pe32Image }

Pe32Image :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_PE32.

Pe32Image

PE32+ image.

Description
The PE32+ image section is a leaf section that contains a complete PE32+ image. Normal EFI
executables are stored within PE32+ images.

Firmware Volume Specification Draft for Review

52 September 2003 Version 0.9

EFI_SECTION_PIC

Summary
A leaf section type that contains a position-independent code (PIC) image.

Prototype
PicSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
{ PicImage }

PicImage :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_PIC.

PicImage

Position-independent PE32+ image with relocation information stripped from the
image.

Description
A PIC image section is a leaf section that contains a position-independent code (PIC) image.

In addition to normal PE32+ images that contain relocation information, Pre-EFI Initialization
Module (PEIM) executables may be PIC and are referred to as PIC images. A PIC image is the
same as a PE32+ image except that all relocation information has been stripped from the image
and the image can be moved and will execute correctly without performing any relocation or
other fix-ups.

Draft for Review Code Definitions

Version 0.9 September 2003 53

EFI_SECTION_TE

Summary
A leaf section that contains a Terse Executable (TE) image.

Prototype
TESection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
TEImage

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_TE.

TEImage

TE image as defined in the Intel® Platform Innovation Framework for EFI
Architecture Specification.

Description
The terse executable section is a leaf section that contains a Terse Executable (TE) image. A TE
image is an executable image format specific to the Framework that is used for storing executable
images in a smaller amount of space than would be required by a full PE32+ image. Only PEI
Foundation and PEIM files may contain a TE section.

Firmware Volume Specification Draft for Review

54 September 2003 Version 0.9

EFI_SECTION_DXE_DEPEX

Summary
A leaf section type that is used to determine the dispatch order for a DXE driver.

Prototype
DxeDepexSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
DepexImage

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_DXE_DEPEX.

DepexImage

DXE driver dependency expression as defined in the Intel® Platform Innovation
Framework for EFI Driver Execution Environment Core Interface Specification
(DXE CIS).

Description
The DXE dependency expression section is a leaf section that contains a dependency expression
that is used to determine the dispatch order for a DXE driver. See the DXE CIS for details
regarding the format of the dependency expression.

Draft for Review Code Definitions

Version 0.9 September 2003 55

EFI_SECTION_VERSION

Summary
A leaf section type that contains a numeric build number and an optional Unicode string that
represents the file revision.

Prototype
VersionSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
< UINT16 BuildNumber >
VersionString

VersionString :
{ INT16 } UnicodeNull

UnicodeNull : < 0x0000 > // Constant INT16 with value of zero

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_VERSION.

BuildNumber

A UINT16 that represents a particular build. Subsequent builds have monotonically
increasing build numbers relative to earlier builds.

VersionString

A null-terminated Unicode string that contains a text representation of the version. If
there is no text representation of the version, then an empty string must be provided.

Description
A version section is a leaf section that contains a numeric build number and an optional Unicode
string that represents the file revision.

To facilitate versioning of PEIMs, DXE drivers, and other files, a version section may be included
in a file. There must never be more than one version section contained within a file.

Firmware Volume Specification Draft for Review

56 September 2003 Version 0.9

EFI_SECTION_USER_INTERFACE

Summary
A leaf section type that contains a Unicode string that contains a human-readable file name.

Prototype
UserInterfaceFileNameSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
FileNameString

FileNameString :
{ INT16 } UnicodeNull

UnicodeNull : < 0x0000 > // Constant INT16 with value of zero

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_USER_INTERFACE.

FileNameString

A null-terminated Unicode string that contains the human readable file name.

Description
The user interface file name section is a leaf section that contains a Unicode string that contains a
human-readable file name.

This section is optional and is not required for any file types. There must never be more than one
user interface file name section contained within a file.

Draft for Review Code Definitions

Version 0.9 September 2003 57

EFI_SECTION_COMPATIBILITY16

Summary
A leaf section type that contains an IA-32 16-bit executable image.

Prototype
Compatibility16Section :

< EFI_COMMON_SECTION_HEADER CommonHeader >
{ Compatibility16Image }

Compatibility16Image :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_COMPATIBILITY16.

Compatibility16Image

Compatibility16 image.

Description
A Compatibility16 image section is a leaf section that contains an IA-32 16-bit executable image.
IA-32 16-bit legacy code that may be included in Framework firmware is stored in a 16-bit

executable image.

Firmware Volume Specification Draft for Review

58 September 2003 Version 0.9

EFI_SECTION_FIRMWARE_VOLUME_IMAGE

Summary
A leaf section type that contains a firmware volume image.

Prototype
FirmwareVolumeImageSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
{ FvImage }

FvImage :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_FIRMWARE_VOLUME_IMAGE.

FvImage

Complete firmware volume image that is suitable for copying into memory and
producing a Firmware Volume Protocol to retrieve the files that are contained
within. The image must contain a valid firmware volume header as defined by the
Intel® Platform Innovation Framework for EFI Firmware Volume Block
Specification.

Description
A firmware volume image section is a leaf section that contains a firmware volume image. It is
used for capsule updates and crisis recovery. See the following specifications for details:

• Intel® Platform Innovation Framework for EFI Capsule Specification
• Intel® Platform Innovation Framework for EFI Recovery Specification

Draft for Review Code Definitions

Version 0.9 September 2003 59

EFI_SECTION_FREEFORM_SUBTYPE_GUID

Summary
A leaf section type that contains a single EFI_GUID.

Prototype
FreeformSubtypeGuidSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
< EFI_GUID SubtypeGuid >

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_FREEFORM_SUBTYPE_GUID.

SubtypeGuid

This GUID is defined by the creator of the file. It is in essence a vendor-defined file
type. Type EFI_GUID is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

Description
A free-form subtype GUID section is a leaf section that contains a single EFI_GUID. It is
typically used in files of type EFI_FV_FILETYPE_FREEFORM to provide an extensibility
mechanism for file types. See EFI_FV_FILETYPE_FREEFORM in “Code Definitions” for more
details about EFI_FV_FILETYPE_FREEFORM files.

Firmware Volume Specification Draft for Review

60 September 2003 Version 0.9

EFI_SECTION_RAW

Summary
A leaf section type that contains an array of zero or more bytes.

Prototype
RawSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
{ Data }

Data :
< UINT8 > { < UINT8 > }

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_RAW.

Data

Zero or more bytes of arbitrary data.

Description
A raw section is a leaf section that contains an array of zero or more bytes. No particular
formatting of these bytes is implied by this section type.

Draft for Review Code Definitions

Version 0.9 September 2003 61

EFI_SECTION_PEI_DEPEX

Summary
A leaf section type that is used to determine dispatch order for a PEIM.

Prototype
PeiDepexSection :

< EFI_COMMON_SECTION_HEADER CommonHeader >
DepexImage

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_PEI_DEPEX.

DepexImage

PEIM dependency expression as defined in the Intel® Platform Innovation
Framework for EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

Description
The PEI dependency expression section is a leaf section that contains a dependency expression that
is used to determine dispatch order for a PEIM. See the PEI CIS for details regarding the format of
the dependency expression.

Firmware Volume Specification Draft for Review

62 September 2003 Version 0.9

Section Extraction Protocol

EFI_SECTION_EXTRACTION_PROTOCOL

Summary
The Section Extraction Protocol provides a simple method of extracting sections from arbitrarily
complex files. The caller is responsible for removing any file-system-specific information from the
contents of the file to produce a clean “section stream.” More generally, a section stream is simply
a buffer containing one or more adjacent sections. Typically, a section stream will simply be the
contents of a sectioned file.

GUID
// 448F5DA4-6DD7-4FE1-9307-69224192215D

#define EFI_SECTION_EXTRACTION_PROTOCOL_GUID \
{ 0x448F5DA4, 0x6DD7, 0x4FE1, 0x93, 0x07, 0x69, 0x22, \
0x41, 0x92, 0x21, 0x5D }

Protocol Interface Structure
typedef struct _EFI_SECTION_EXTRACTION_PROTOCOL {

EFI_OPEN_SECTION_STREAM OpenSectionStream;
EFI_GET_SECTION GetSection;
EFI_CLOSE_SECTION_STREAM CloseSectionStream;

} EFI_SECTION_EXTRACTION_PROTOCOL;

Parameters
OpenSectionStream

Takes a bounded stream of sections and returns a section stream handle. See the
OpenSectionStream() function description.

GetSection

Given a section stream handle, retrieves the requested section and meta-data from the
section stream. See the GetSection() function description.

CloseSectionStream

Given a section stream handle, closes the section stream. See the
CloseSectionStream() function description.

Draft for Review Code Definitions

Version 0.9 September 2003 63

EFI_SECTION_EXTRACTION_PROCOCOL.OpenSectionStream()

Summary
Creates and returns a new section stream handle to represent the new section stream.

Prototype
EFI_STATUS
(EFIAPI *EFI_OPEN_SECTION_STREAM)(

IN EFI_SECTION_EXTRACTION_PROTOCOL *This,
IN UINTN SectionStreamLength,
IN VOID *SectionStream,
OUT UINTN *SectionStreamHandle
);

Parameters
This

Indicates the EFI_SECTION_EXTRACTION_PROTOCOL instance.

SectionStreamLength

Size in bytes of the section stream.

SectionStream

Buffer containing the new section stream.

SectionStreamHandle

A pointer to a caller-allocated UINTN that, on output, contains the new section
stream handle.

Description
The OpenSectionStream() function creates and returns a new section stream handle to
represent the new section stream. This handle is used to access the section stream in the
GetSection() and CloseSectionStream() APIs.

OpenSectionStream() is callable only from EFI_TPL_NOTIFY and below. Behavior of
OpenSectionStream() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the EFI 1.10 Specification.

Status Codes Returned
EFI_SUCCESS The SectionStream was successfully processed and the

section stream handle was returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The SectionStream does not end coincident with the last
section in the stream. The section stream may be corrupt or the
value of SectionStreamLength may be incorrect.

Firmware Volume Specification Draft for Review

64 September 2003 Version 0.9

EFI_SECTION_EXTRACTION_PROCOCOL.GetSection()

Summary
Reads and returns a single section from a section stream.

Prototype
EFI_STATUS
(EFIAPI *EFI_GET_SECTION)(

IN EFI_SECTION_EXTRACTION_PROTOCOL *This,
IN UINTN SectionStreamHandle,
IN EFI_SECTION_TYPE *SectionType,
IN EFI_GUID *SectionDefinitionGuid, OPTIONAL
IN UINTN SectionInstance,
IN OUT VOID **Buffer,
IN OUT UINTN *BufferSize,
OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_SECTION_EXTRACTION_PROTOCOL instance.

SectionStreamHandle

Indicates from which section stream to read.

SectionType

Pointer to an EFI_SECTION_TYPE. If SectionType == NULL, the contents of
the entire section stream are returned in Buffer. If SectionType is not NULL,
only the requested section is returned. EFI_SECTION_ALL matches all section
types and can be used as a wild card to extract all sections in order.

SectionDefinitionGuid

Pointer to an EFI_GUID. If SectionType ==
EFI_SECTION_GUID_DEFINED, SectionDefinitionGuid indicates what
section GUID to search for. If SectionType
!=EFI_SECTION_GUID_DEFINED, then SectionDefinitionGuid is
unused and is ignored.

See EFI_GUID_DEFINED_SECTION for details about GUID-defined sections.
Type EFI_GUID is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

Draft for Review Code Definitions

Version 0.9 September 2003 65

SectionInstance

Indicates which instance of the requested section type to return when
SectionType is not NULL. The file’s section layout can be thought of as a tree
that is built recursively left to right. SectionInstance is zero based and is
calculated using a left-to-right, depth-first search algorithm of the file’s section
layout. See Code Definitions: Framework Firmware Image Format for more
information. If SectionType is NULL, SectionInstance is ignored.

SectionStreamHandle

A pointer to a caller-allocated UINTN that, on output, contains the new section
stream handle.

Buffer

Pointer to a pointer to a buffer in which the section contents are returned. See
“Description” below for more details on the use of the Buffer parameter.

BufferSize

Pointer to a caller-allocated UINTN. On input, *BufferSize indicates the size in
bytes of the memory region pointed to by Buffer. On output, *BufferSize
contains the number of bytes that are required to read the section.

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which any meta-data from encapsulation
GUID-defined sections is returned. See EFI_GUID_DEFINED_SECTION for
more information on GUID-defined sections.

Description
The GetSection() function is used to retrieve a section from within a section stream. The
stream can be thought of as a tree with encapsulation sections as interior nodes and terminal leaf
sections. This tree is built and searched left to right, depth first.

GetSection() will retrieve both encapsulation sections and leaf sections in their entirety,
exclusive of the section header.

Since the requested section may be contained within compression and/or GUIDed encapsulations,
the implementation must be capable of processing these encapsulations to produce the requested
section. While decompression of an encapsulation compression section is completely transparent,
the results of all encapsulation GUIDed sections used for authentication must be exposed to the
caller so the caller can make appropriate policy decisions. The authentication results are passed
back using the AuthenticationStatus output variable. See the parameter description above
for a full description of this output.

The output buffer is specified by a double indirection of the parameter Buffer. The input value
of *Buffer is used to determine if the output buffer is caller allocated or is dynamically allocated
by GetSection().

If the input value of *Buffer!=NULL, it indicates the output buffer is caller allocated. In this
case, the input value of *BufferSize indicates the size of the caller-allocated output buffer. If
the output buffer is not large enough to contain the entire requested output, it is filled up to the

Firmware Volume Specification Draft for Review

66 September 2003 Version 0.9

point that the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and
then *BufferSize is returned with the size required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
GetSection(). In this case, GetSection() will allocate an appropriately sized buffer from
boot services pool memory, which will be returned in *Buffer. The size of the new buffer is
returned in *BufferSize and all other output parameters are returned with valid values.

GetSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the EFI 1.10 Specification.

Related Definitions
//**
// Bit values for AuthenticationStatus
//**
#define EFI_AGGREGATE_AUTH_STATUS_PLATFORM_OVERRIDE 0x000001
#define EFI_AGGREGATE_AUTH_STATUS_IMAGE_SIGNED 0x000002
#define EFI_AGGREGATE_AUTH_STATUS_NOT_TESTED 0x000004
#define EFI_AGGREGATE_AUTH_STATUS_TEST_FAILED 0x000008

#define EFI_LOCAL_AUTH_STATUS_PLATFORM_OVERRIDE 0x010000
#define EFI_LOCAL_AUTH_STATUS_IMAGE_SIGNED 0x020000
#define EFI_LOCAL_AUTH_STATUS_NOT_TESTED 0x040000
#define EFI_LOCAL_AUTH_STATUS_TEST_FAILED 0x080000

// All other bits are reserved and must be 0.

The bit definitions above are in two groups:

• Bits 3:0: Indicate the aggregate AuthenticationStatus for the data retrieved. This
aggregate is the bit-wise OR of all AuthenticationStatus values from all layers of
GUID-defined sections that were encountered when retrieving the data and any default
AuthenticationStatus the implementation has associated with the firmware volume.

• Bits 19:16: Indicate the AuthenticationStatus of the data’s immediate parent.

Any section that does not generate its own AuthenticationStatus data (i.e., any leaf section,
or compression section, or any GUID-defined encapsulation section that has the Attributes:
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit clear) inherits the full
AuthenticationStatus from its immediate parent.

GUID-defined encapsulation sections that have the Attributes:
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set generate
AuthenticationStatus data. As such, this local status data is used to refresh bits 19:16.
This local status must also be bit-wise ORed with the aggregate status.

The table below describes the possible values for each grouping of four
AuthenticationStatus bits.

Draft for Review Code Definitions

Version 0.9 September 2003 67

Table 3-2. Possible AuthenticationStatus Bit Values

Bits 3:0 Bits 19:16

xx00 Image was not signed at any layer. Image was not locally signed.

xxx1 Platform security policy override… Assumes
same meaning as 0010 (image was signed,
signature was tested, and signature passed
authentication test).

The Section Extraction Protocol cannot
produce this result, but it can be generated
from the Firmware Volume interface if a default
Firmware Volume
AuthenticationStatus is
implemented.

Same meaning as for bits 3:0.

0010 One or more section encapsulations of the
image were signed, the signatures were
tested, and all signatures passed their
respective authentication tests.

This value is the cumulative or aggregate
result of all authentication encapsulations.

Same meaning as bits 3:0, except it represents
the local authentication status of the encapsulation
from which the data was retrieved.

0110 Image was signed, and the signature was not
tested. This case can occur if there is no
GUIDed Section Extraction Protocol available
to process a GUID-defined section, but it was
still possible to retrieve the data from the
GUID-defined section directly.

This value is the cumulative or aggregate
result of all authentication encapsulations.

Same meaning as bits 3:0, except it represents
the local authentication status of the encapsulation
from which the data was retrieved.

1010 Image was signed, signature was tested, and
signature failed the authentication test.

This value is the cumulative or aggregate
result of all authentication encapsulations.

Same meaning as bits 3:0, except it represents
the local authentication status of the encapsulation
from which the data was retrieved.

1110 To generate this code, there must be at
least two layers of GUIDed encapsulations.
In one layer, the
AuthenticationStatus was
returned as 0110; in another layer, it was
returned as 1010. When these two results
are ORed together, the aggregate result
is 1110.

This value is invalid for bits 19:16 because this
value requires at least two layers of authentication
and bits 19:16 represent only the most local result.

Firmware Volume Specification Draft for Review

68 September 2003 Version 0.9

Status Codes Returned
EFI_SUCCESS The SectionStream was successfully processed and the

section contents were returned in Buffer.

EFI_PROTOCOL_ERROR A GUID-defined section was encountered in the section stream
with its
EFI_GUIDED_SECTION_PROCESSING_REQUIRED bit
set, but there was no corresponding GUIDed Section Extraction
Protocol in the handle database. *Buffer is unmodified.

EFI_NOT_FOUND An error was encountered when parsing the SectionStream,
which indicates that the SectionStream is not correctly
formatted.

EFI_NOT_FOUND The requested section does not exist. *Buffer is unmodified.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The SectionStreamHandle does not exist.

EFI_WARN_BUFFER_
TOO_SMALL

The size of the input buffer is insufficient to contain the requested
section. The input buffer is filled and section contents are
truncated.

Draft for Review Code Definitions

Version 0.9 September 2003 69

EFI_SECTION_EXTRACTION_PROCOCOL.CloseSectionStream()

Summary
Deletes a section stream handle and returns all associated resources to the system.

Prototype
EFI_STATUS
(EFIAPI *EFI_CLOSE_SECTION_STREAM)(

IN EFI_SECTION_EXTRACTION_PROTOCOL *This,
IN UINTN SectionStreamHandle
);

Parameters
This

Indicates the EFI_SECTION_EXTRACTION_PROTOCOL instance.

SectionStreamHandle

Indicates the section stream to close.

Description
The CloseSectionStream() function deletes a section stream handle and frees all associated
system resources.

CloseSectionStream() is callable only from EFI_TPL_NOTIFY and below. Behavior of
CloseSectionStream() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the EFI 1.10 Specification.

Status Codes Returned
EFI_SUCCESS The SectionStream was successfully processed and the

section stream handle was returned.

EFI_INVALID_PARAMETER The SectionStreamHandle does not exist.

Firmware Volume Specification Draft for Review

70 September 2003 Version 0.9

GUIDed Section Extraction Protocol

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

Summary
If a GUID-defined section is encountered when doing section extraction, the section extraction
driver calls the appropriate instance of the GUIDed Section Extraction Protocol to extract the
section stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all
instances of the GUIDed Section Extraction Protocol must have the same interface structure,
they do not all have the same GUID. The GUID that is associated with an instance of the GUIDed
Section Extraction Protocol is used to correlate it with the GUIDed section type that it is
intended to process.

Protocol Interface Structure
typedef struct {

EFI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

Draft for Review Code Definitions

Version 0.9 September 2003 71

EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the
authentication status.

Prototype
EFI_STATUS
(EFIAPI *EFI_EXTRACT_GUIDED_SECTION)(

IN EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL *This,
IN VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from boot services pool memory and contains the
new section stream. The caller is responsible for freeing this buffer.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. Both local bits (19:16) and
aggregate bits (3:0) in AuthenticationStatus are returned by
ExtractSection(). These bits reflect the status of the extraction operation. The
bit pattern in both regions must be the same, as the local and aggregate authentication
statuses have equivalent meaning at this level. See
EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more details.
If the function returns anything other than EFI_SUCCESS, the value of
*AuthenticationStatus is undefined.

Firmware Volume Specification Draft for Review

72 September 2003 Version 0.9

Description
The ExtractSection() function processes the input section and allocates a buffer from the
pool in which it returns the section contents.

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

Depending on the algorithm and size of the encapsulated data, the time that is required to do a full
authentication may be prohibitively long for some classes of systems. To enable a platform policy
of Authenticate on capsule update but not during normal boot, the platform must be able to indicate
this policy to the GUIDed Section Extraction Protocol (see the Intel® Platform Innovation
Framework for EFI Capsule Specification for more details). This indication is done using
EFI_SECURITY_POLICY_PROTOCOL_GUID, which may be published by the security policy
driver (see the DXE CIS for more details and the GUID definition). If the
EFI_SECURITY_POLICY_PROTOCOL_GUID exists in the handle database, then, if possible,
full authentication should be skipped and the section contents simply returned in the
OutputBuffer. In this case, the EFI_AUTH_STATUS_PLATFORM_OVERRIDE bit
AuthenticationStatus must be set on return. See the Intel® Platform Innovation
Framework for EFI Pre-EFI Initialization Core Interface Specification (PEI CIS) for the definition
of type EFI_AUTH_STATUS_PLATFORM_OVERRIDE.

ExtractSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ExtractSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the EFI 1.10 Specification.

Status Codes Returned
EFI_SUCCESS The InputSection was successfully processed and the

section contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of
the GUIDed Section Extraction Protocol.

Draft for Review Code Definitions

Version 0.9 September 2003 73

File Types

EFI_FV_FILETYPE

Summary
Given the various uses for firmware files, different file types are defined. Each file type is
encoded as an 8-bit unsigned integer and carries with it a set of construction rules regarding
file section organization.

Prototype
typedef UINT8 EFI_FV_FILETYPE;

Related Definitions
Following is the enumeration of file types:
#define EFI_FV_FILETYPE_ALL 0x00
#define EFI_FV_FILETYPE_RAW 0x01
#define EFI_FV_FILETYPE_FREEFORM 0x02
#define EFI_FV_FILETYPE_SECURITY_CORE 0x03
#define EFI_FV_FILETYPE_PEI_CORE 0x04
#define EFI_FV_FILETYPE_DXE_CORE 0x05
#define EFI_FV_FILETYPE_PEIM 0x06
#define EFI_FV_FILETYPE_DRIVER 0x07
#define EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER 0x08
#define EFI_FV_FILETYPE_APPLICATION 0x09
// The value 0x0A is reserved and should not be used
#define EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE 0x0B

File type values between 0xE0 and 0xEF are reserved for use by the test architecture. File
types between 0xF0 and 0xFF are reserved for use by the file system. See the Intel® Platform
Innovation Framework for EFI Firmware File System Specification and applicable test architecture
specifications for details of these file types. All other values are reserved for future use.

EFI_FV_FILETYPE_ALL

Summary
The value EFI_FV_FILETYPE_ALL is a pseudo type and reserved for use with the
EFI_FIRMWARE_VOLUME_PROTOCOL.GetNextFile() API. EFI_FV_FILETYPE_ALL
is not a legal file type for an actual file. When specified to GetNextFile(), it indicates that no
filtering on file type is to be done.

Prototype
#define EFI_FV_FILETYPE_ALL 0x00

Firmware Volume Specification Draft for Review

74 September 2003 Version 0.9

EFI_FV_FILETYPE_RAW

Summary
The file type EFI_FV_FILETYPE_RAW denotes a file that does not contain sections and is treated
as a raw data file. The consumer of this type of file must have a priori knowledge of its format and
content. Because there are no sections, there are no construction rules.

Prototype
#define EFI_FV_FILETYPE_RAW 0x01

EFI_FV_FILETYPE_FREEFORM

Summary
The file type EFI_FV_FILETYPE_FREEFORM denotes a sectioned file that may contain any
combination of encapsulation and leaf sections. While the section layout can be parsed, the
consumer of this type of file must have a priori knowledge of how it is to be used.

Prototype
#define EFI_FV_FILETYPE_FREEFORM 0x02

Description
A single EFI_SECTION_FREEFORM_SUBTYPE_GUID section may be included in a file of type
EFI_FV_FILETYPE_FREEFORM to provide additional file type differentiation. While it is
permissible to omit the EFI_SECTION_FREEFORM_SUBTYPE_GUID section entirely, there
must never be more than one instance of it.

There are no other construction rules.

EFI_FV_FILETYPE_SECURITY_CORE

Summary
The file type EFI_FV_FILETYPE_SECURITY_CORE denotes code and data that comprises the
first part of Framework firmware to execute. Its format is undefined with respect to the Framework
architecture, as differing platform architectures may have varied requirements.

Prototype
#define EFI_FV_FILETYPE_SECURITY_CORE 0x03

Draft for Review Code Definitions

Version 0.9 September 2003 75

EFI_FV_FILETYPE_PEI_CORE

Summary
The file type EFI_FV_FILETYPE_PEI_CORE denotes a file that is the PEI Foundation. This
image is entered upon completion of the SEC phase of a Framework boot cycle.

Prototype
#define EFI_FV_FILETYPE_PEI_CORE 0x04

Description
This file type is a sectioned file that must be constructed in accordance with the following rules:

1. The file must contain one and only one executable section. This section must have one of the
following types:

2. EFI_SECTION_PE32

3. EFI_SECTION_PIC

4. EFI_SECTION_TE

2. The file must contain no more than one EFI_SECTION_VERSION section.

As long as the above rules are followed, the file may contain other leaf and encapsulations as
required/enabled by the platform design.

EFI_FV_FILETYPE_DXE_CORE

Summary
The file type EFI_FV_FILETYPE_DXE_CORE denotes the file that is the DXE Foundation. This
image is the one entered upon completion of the PEI phase of an EFI boot cycle.

Prototype
#define EFI_FV_FILETYPE_DXE_CORE 0x05

Description
This file type is a sectioned file that must be constructed in accordance with the following rules:

1. The file must contain at one and only one executable section, which must have a type of
EFI_SECTION_PE32.

2. The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections
as required or enabled by the platform design.

Firmware Volume Specification Draft for Review

76 September 2003 Version 0.9

EFI_FV_FILETYPE_PEIM

Summary
The file type EFI_FV_FILETYPE_PEIM denotes a file that is a PEIM. A PEIM is dispatched
by the PEI Foundation based on its imports and exports during execution of the PEI phase. See the
Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core Interface Specification
(PEI CIS) for details on PEI operation.

Prototype
#define EFI_FV_FILETYPE_PEIM 0x06

Description
This file type is a sectioned file that must be constructed in accordance with the following rules:

1. The file must contain one and only one executable section. This section must have one of
the following types:

2. EFI_SECTION_PE32

3. EFI_SECTION_PIC

4. EFI_SECTION_TE

2. The file must contain no more than one EFI_SECTION_VERSION section.

3. The file must contain no more than one EFI_SECTION_PEI_DEPEX section.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections
as required or enabled by the platform design. Care must be taken to ensure that additional
encapsulations do not render the file inaccessible due to execute-in-place requirements.

EFI_FV_FILETYPE_DRIVER

Summary
The file type EFI_FV_FILETYPE_DRIVER denotes a file that contains a PE32 image that
can be dispatched by the DXE Dispatcher.

Prototype
#define EFI_FV_FILETYPE_DRIVER 0x07

Description
This file type is a sectioned file that must be constructed in accordance with the following rules:

1. The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions
on encapsulation of this section.

2. The file must contain no more than one EFI_SECTION_VERSION section.

3. The file must contain no more than one EFI_SECTION_DXE_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections.

Draft for Review Code Definitions

Version 0.9 September 2003 77

In the event that more than one EFI_SECTION_PE32 section is present in the file, the
selection algorithm for choosing which one represents the DXE driver that will be dispatched
is defined by the LoadImage() boot service, which is used by the DXE Dispatcher. See the
DXE CIS for details.

The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER

Summary
The file type EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER denotes a file that contains
code suitable for dispatch by the PEI Dispatcher, as well as a PE32 image that can be dispatched
by the DXE Dispatcher. It has two uses:

• Enables sharing code between PEI and DXE to reduce firmware storage requirements
• Enables bundling coupled PEIM/driver pairs in the same file.

Prototype
#define EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER 0x08

Description
This file type is a sectioned file and must follow the intersection of all rules defined for both
EFI_FV_FILETYPE_PEIM and EFI_FV_FILETYPE_DRIVER files. This intersection is
listed below:

1. The file must contain one and only one EFI_SECTION_PE32 section. There are no
restrictions on encapsulation of this section; however, care must be taken to ensure any execute-
in-place requirements are satisfied.

2. The file must not contain more than one EFI_SECTION_DXE_DEPEX section.

3. The file must not contain more than one EFI_SECTION_PEI_DEPEX section.

4. The file must contain no more than one EFI_SECTION_VERSION section.

The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

Firmware Volume Specification Draft for Review

78 September 2003 Version 0.9

EFI_FV_FILETYPE_APPLICATION

Summary
The file type EFI_FV_FILETYPE_APPLICATION denotes a file that contains a PE32 image
that can be loaded using the EFI Boot Service LoadImage(). Files of type
EFI_FV_FILETYPE_APPLICATION are not dispatched by the DXE Dispatcher.

Prototype
#define EFI_FV_FILETYPE_APPLICATION 0x09

Description
This file type is a sectioned file that must be constructed in accordance with the following rule:

1. The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions
on encapsulation of this section.

There are no restrictions on the encapsulation of the leaf section.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the PE32 for the application in question is defined
by the LoadImage() boot service. See the DXE CIS for details.

The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE

Prototype
The file type EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE denotes a file that contains
one or more firmware volume images. This special file type is used to produce firmware volumes
in conjunction with a firmware update or crisis recovery. See the following specifications for
details:

• Intel® Platform Innovation Framework for EFI Capsule Specification
• Intel® Platform Innovation Framework for EFI Recovery Specification

Summary
#define EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE 0x0B

Description
This file type is a sectioned file that must be constructed in accordance with the following rule:

1. The file must contain at least one section of type
EFI_SECTION_FIRMWARE_VOLUME_IMAGE. There are no restrictions on encapsulation
of this section.

The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

	Intel® Platform Innovation Framework for EFI Firmware Volume Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Scope
	Rationale
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Firmware Volumes
	Firmware Volume Protocol
	Firmware Volume Protocol Overview
	Firmware Volume Protocol Stacks
	Firmware Volume Protocol Stack: Typical
	Firmware Volume Protocol Stack: Memory-Mapped Firmware Volume Hardware
	Firmware Volume Protocol Stack: Direct Interface with Hardware

	Framework Firmware Image Format
	Framework Firmware Image Format Introduction
	File Sections
	File Sections
	Example File Image
	Section Layout
	Architectural Section Types

	Section Extraction Protocols
	Section Extraction Protocol Overview
	GUIDed Section Extraction Protocol Overview

	File Types
	File Types Overview

	3. Code Definitions
	Introduction
	Firmware Volume Protocol
	EFI_FIRMWARE_VOLUME_PROTOCOL
	EFI_FIRMWARE_VOLUME_PROTOCOL. GetVolumeAttributes()
	EFI_FIRMWARE_VOLUME_PROTOCOL. SetVolumeAttributes()
	EFI_FIRMWARE_VOLUME_PROTOCOL.ReadFile()
	EFI_FIRMWARE_VOLUME_PROTOCOL. ReadSection()
	EFI_FIRMWARE_VOLUME_PROTOCOL.WriteFile()
	EFI_FIRMWARE_VOLUME_PROTOCOL.GetNextFile()

	Framework Firmware Image Format
	File Sections
	EFI_COMMON_SECTION_HEADER
	Encapsulation Sections
	EFI_SECTION_COMPRESSION
	EFI_SECTION_GUID_DEFINED

	Leaf Sections
	EFI_SECTION_PE32
	EFI_SECTION_PIC
	EFI_SECTION_TE
	EFI_SECTION_DXE_DEPEX
	EFI_SECTION_VERSION
	EFI_SECTION_USER_INTERFACE
	EFI_SECTION_COMPATIBILITY16
	EFI_SECTION_FIRMWARE_VOLUME_IMAGE
	EFI_SECTION_FREEFORM_SUBTYPE_GUID
	EFI_SECTION_RAW
	EFI_SECTION_PEI_DEPEX

	Section Extraction Protocol
	EFI_SECTION_EXTRACTION_PROTOCOL
	EFI_SECTION_EXTRACTION_PROCOCOL.OpenSectionStream()
	EFI_SECTION_EXTRACTION_PROCOCOL.GetSection()
	EFI_SECTION_EXTRACTION_PROCOCOL.CloseSectionStream()

	GUIDed Section Extraction Protocol
	EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL
	EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

	File Types
	EFI_FV_FILETYPE
	EFI_FV_FILETYPE_ALL
	EFI_FV_FILETYPE_RAW
	EFI_FV_FILETYPE_FREEFORM
	EFI_FV_FILETYPE_SECURITY_CORE
	EFI_FV_FILETYPE_PEI_CORE
	EFI_FV_FILETYPE_DXE_CORE
	EFI_FV_FILETYPE_PEIM
	EFI_FV_FILETYPE_DRIVER
	EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER
	EFI_FV_FILETYPE_APPLICATION
	EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE

