Twitter Boosts Performance and Cost Efficiency

Twitter increases Hadoop performance and cost efficiency with caching, fast SSDs and more compute.

At a Glance:

  • Twitter uses Hadoop* for storing data and performing advanced analytics to generate important business insights.

  • Twitter expects that caching temporary data with Intel® SSDs based on Intel® 3D NAND Technology and increasing core counts with 2nd Gen Intel® Xeon® Scalable processors will result in approximately 30 percent lower TCO and over 50 percent faster runtimes, compared to their legacy production cluster configuration.1

BUILT IN - ARTICLE INTRO SECOND COMPONENT

Executive Overview
Storage I/O can be a significant performance bottleneck for Hadoop* clusters, especially in hyperscale deployments like those at Twitter, where a single cluster can have up to 10,000 nodes and nearly 100 PB of logical storage. The typical Hadoop cluster at Twitter contains over 100,000 hard disk drives (HDDs)—but this configuration was reaching an I/O performance limit because while HDD capacity has increased over time, HDD performance has not significantly changed.2 Therefore, simply adding more, bigger HDDs wasn’t going to solve Twitter’s scaling challenges—in fact, it would make things worse as the I/O per GB decreases. Adding more spindles per node was not feasible due to space and power limitations.

Working in collaboration with an Intel engineering team, Twitter engineers conducted a series of experiments that revealed that storing temporary files managed by YARN* (Yet Another Resource Negotiator*) on a fast SSD enabled significant performance improvements on existing hardware (up to a 50 percent reduction in runtime).3 The team also discovered that removing a storage I/O bottleneck enabled them to use larger hard drives while simultaneously increasing processor utilization, which in turn resulted in the ability to use higher-core-count processors. This positively affected storage performance, and contributed to higher data center density by reducing the number of required HDDs.

Higher density leads to total cost of ownership (TCO) savings through energy efficiency, fewer racks, and a smaller data center footprint. Overall, Twitter expects that caching temporary data and increasing core counts will result in approximately 30 percent lower TCO and over 50 percent faster runtimes, compared to their legacy production cluster configuration.1

Read the white paper - Boosting Hadoop* Performance and Cost Efficiency with Caching, Fast SSDs, and More Compute

Explore Related Products and Solutions

Notices and Disclaimers

Intel® technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at https://www.intel.ru. // Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit https://www.intel.ru/benchmarks. // Performance results are based on testing as of the date set forth in the configurations and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. // Cost reduction scenarios described are intended as examples of how a given Intel®-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction. // Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate. // In some test cases, results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Информация о продукте и производительности

1

Базовая конфигурация: один процессор Intel® Xeon® E3-1230 v6 (4 ядра); 32–64 ГБ ОЗУ; 1 жесткий диск на 1 или 2 ТБ; загрузочный диск Intel S4500 240 ГБ; сетевой адаптер 1 GbE — 10 GbE; без кэширования. Тест: один процессор Intel® Xeon® Gold 6262 (24 ядра); 192 ГБ ОЗУ; загрузочный диск Intel S4500 240 ГБ; 8 жестких дисков емкостью 6 ТБ; 1 твердотельный накопитель Intel® DC P4610 6,4 ТБ; сетевой контроллер 25 GbE; кэширование с использованием ПО Intel® Cache Acceleration Software (Intel® CAS). ОС: Twitter CentOS* 6 Derivative, версия ядра 2.6.74-t1.el6.x86_64 (на базе предыдущей версии ядра 4.14.12), версия BIOS: D3WWM11, версия микропрограммного обеспечения: 0xb000021.

2

Backblaze, сентябрь 2018 г. «Жесткие диски (HDD) и твердотельные накопители (SSD): в чем разница?» https://www.backblaze.com/blog/hdd-versus-ssd-whats-the-diff/.

3

Базовая конфигурация: процессор Intel® Xeon® E5-2630 v4 с двумя гнездами, тактовая частота 2,2 ГГц (10 ядер/20 потоков на гнездо); 128 ГБ ОЗУ; 12 жестких дисков SATA 6 ТБ 7200 об/мин; 1 загрузочный твердотельный накопитель SATA; сетевой контроллер 25 GbE; 102 узла в 6 стойках. Рабочие нагрузки: Gridmix* и Terasort*. Показатель Gridmix: 3309 секунд; показатель Terasort: 5504 секунды Тест: процессор Intel® Xeon® E5-2630 v4 с двумя гнездами, тактовая частота 2,2 ГГц (10 ядер/20 потоков на гнездо); 128 ГБ ОЗУ; 12 жестких дисков SATA 6 ТБ 7200 об/мин; 1 загрузочный твердотельный накопитель SATA; 1 твердотельный накопитель 750 GB Intel® Optane™ DC P4800X на базе NVMe*; сетевой контроллер 25 GbE; 102 узла в 6 стойках. Рабочие нагрузки: Gridmix и Terasort. Показатель Gridmix: 2396 секунд; показатель Terasort: 2640 секунд ОС: Twitter CentOS* 6 Derivative, ядро.